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Summary

Energy efficiency for computer systems is an ever-growing concern that has caught the at-
tention of the software engineering community. Although hardware design and utilisation
are undoubtedly key factors for affecting energy consumption, there is substantial evidence
that software can also significantly influence the energy usage of computer platforms. To
this end, researchers in software engineering have carried out numerous studies at different
granularities of the software stack.

By investigating literature related to energy efficiency in software development, we per-
formed a survey study and found several research challenges that we address in this thesis.
Specifically, we find that the energy and run-time performance implications of the follow-
ing were not investigated by prior works: (1) tasks implemented in different programming
languages and run on distinct computer platforms, (2) various remote Inter-Process Com-
munication technologies that are implemented in different programming languages, and (3)
different security mechanisms that protect modern operating systems frommalicious users.

Software practitioners can select from a large pool of programming languages to develop
software applications and systems. Each of these programming languages comes with sev-
eral features and characteristics that can affect the energy consumption and run-time per-
formance of programming tasks implemented in them. To this end, we perform a large scale
empirical study tomeasure the energy consumption and run-timeperformance of commonly
used programming tasks implemented in different programming languages and computer
systems. We obtain measurements to calculate the Energy Delay Product, a weighted func-
tion that takes into account a task’s energy consumption and run-time performance. We
perform our tests by calculating the Energy Delay Product of 25 programming tasks, found in
the Rosetta Code Repository, which are implemented in 14 programming languages and run
them on three different computer platforms, a server, a laptop, and an embedded system.
Our results show that the compiled programming languages outperform the interpreted
ones for most, but not for all tasks. C, C#, and JavaScript are on average the best perform-
ing compiled, semi-compiled, and interpreted programming languages, respectively, for the
Energy Delay Product, Rust appears to be well-placed for I/O-intensive operations, such as
file handling. We also find that a good behavior, energy-wise, can be the result of clever
optimisations and design choices in seemingly unexpected programming languages.

We further extend the above study by analysing another important aspect of modern IT
services, the remote Inter-Process Communication technologies that enable computer sys-
tems to use the Internet for creating, reading, updating, and deleting shared data. Compared
to the above study, in this work, we use a client/server approach to study the energy and
run-time performance. To evaluate the energy consumption of Inter-Process Communica-
tions technologies and the corresponding run-time performance implications, we examine
technologies such as RPC, Rest, and gRPC implemented in Go, Java, JavaScript, Python, PHP,
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Ruby, and C#. We perform our experiments on computer platforms equipped with Intel and
ARM processors. The results suggest that JavaScript and Go implementations of gRPC yield
the lowest energy consumption and execution time. Furthermore, by analysing their system
call traces, we find that inefficient use of system calls can contribute to increased energy
consumption and poor execution time.

An operating system (OS) typically includes numerous security mechanisms that protect
the confidentiality, integrity, and availability of its data and services. However, such safe-
guardsmay impact energy consumption and encumber the run-timeperformance of applica-
tions running on a system. We present a large scale study, where we investigate how the var-
ious security mechanisms affect energy and run-time performance cost at the OS-level. We
focus on well-known mechanisms including encrypted communication protocols, memory
zeroing, GCC safeguards, and CPU vulnerability patches against critical vulnerabilities, such
asMeltdown. To do so, we utilise 128 benchmarks of different application types found under
the well-established Phoronix test suite. Our findings suggest that security mechanisms lead
to an increased energy consumption and significantly degrade the run-time performance of
various applications including web servers, databases systems, kernel operations, and disk
usage. Notably, when we disabled the various security mechanisms, real-world applications
such as Apache and Redis, indicated important energy (from 18% to 41%) and run-time per-
formance (23% to 45%) gains. Additionally, we examined the correlation between energy
consumption and performance. Our findings showed that the two are not always related.
Overall, our results suggest that administrators should consider disabling such securitymech-
anisms when a computer system runs inside a secure environment to benefit from energy
and run-time performance gains.

In conclusion, this thesis presents research studies in three different directions First, it
offers a large-scale study and points out which languages are more energy-friendly than oth-
ers for particular programming tasks and computer systems. Second, it presents the energy
and run-time performance impact of various Inter-Process Communication technologies and
how they can affect simple daily tasks. Finally, this thesis, goes beyond the selection of vari-
ous languages and frameworks and depicts the daily energy and run-time sacrificed to keep
the integrity of our data against malicious users. Along with the thesis, we offer two datasets
with tools to install system and library dependencies, to manage and execute them, and to
visualise the results. Software practitioners can utilise these datasets to perform related
studies of interest.



Chapter 1

Introduction

In this chapter, we initially provide the context of this work, the problem statement, the
proposed solutions, the contributions, and the thesis outline. Regarding the section on how
to read this thesis, we inform the reader on how our research studies are divided across the
sections of this thesis. In the Context (Section 1.1), we highlight the importance of energy
efficiency for computer systems, while in the Problem Statement (Section 1.2) we define the
limitations of previous studies. We propose on how to fill the research gaps defined in the
Problem Statement section, andwediscuss the contributions of this thesis (Section 1.3) After,
we present the outline of this work (Section 1.4). Finally, we present a guideline on how to
read this thesis (Section 1.5)

1.1 Context

The energy consumption, for the IT-related products, is an ever-growing matter that has
caught the attention of academic researchers and industry. This is primarily due to the in-
creasing costs, as IT-related energy consumption is estimated to reach 15% of the world’s to-
tal by 2020 [168], while it is expected to reach 50% by 2030, in the worst-case scenario [11].
Energy consumption of IT systems is particularly important in two areas. First, the data cen-
tres, one of the vital contributors to the IT sector’s global energy consumption, are housing a
large number of server nodes that are running programs and communicating with clients
through energy-intensive remote IPC technologies. Second, the blossoming field of IoT,
where low energy performance is critical, has multiple embedded devices connected with
cyber-physical systems to manage, analyse, exchange, share, and transmit data. To this end,
providing sustainable solutions, by reducing energy consumption, to ensure data centres’
and IoT infrastructures environmental sustainability and business growth is of paramount
importance.

Energy efficiency for computer systems can be examined in terms of software and hard-
ware. In this thesis, we investigate the energy implications of the software-related cate-
gory. Developing software to be energy-efficient is a demanding and challenging task be-
cause of the lack of tooling support, practices, and guidelines [134, 115, 93]. Researchers
have carried out studies on different aspects and granularity of software artifacts to de-
termine the energy consumption of data structures [136, 63, 124, 127, 172], different pro-
gramming languages [4, 143, 87], multi-threaded applications [135, 132, 131], coding prac-
tices [166, 89, 153, 152, 138], and so on. Although there is a large and consistent body of

1



2 / 130 1.2. PROBLEM STATEMENT

knowledge in various fields of software engineering, there is still a lack of guidelines to iden-
tify energy-wise decision making on programming language and framework selection.

Apart from the applications, that are running in a computer system, there is also the Op-
erating System (OS) that is responsible for managing these applications and their resource
usage. Modern OSs are equipped with various services, background processes, daemons,
and so on, each of which may increase the energy consumption and execution time of com-
puter platforms. Among such services are the security mechanisms that are responsible for
guarding a computer system against malicious users. Even thoughmany studies examine the
run-time performance of various security measures, their energy consumption has not been
investigated thoroughly.

1.2 Problem Statement

This thesis aims to further enrich the existing body of knowledge regarding the
development of energy-efficient software by (1) identifying which program-
ming languages are more energy-efficient for particular tasks and computer
systems, (2) presentingwhich remote IPC technology implementations can re-
duce web applications energy demands, and (3) pointing out the energy per-
formance penalty of applications caused by security measures.

Programming languages are interfaces for communicating with computer systems in or-
der to manage their resources and solve algorithmic problems. Although a large pool of
programming languages exists, there is limited knowledge or understanding of their energy
consumption. In many cases, researchers compared only a handful of programming lan-
guages on a limited amount of tasks or computer platforms [4, 33, 142]. In order to draw
precise and reliable conclusions, it is important to conduct large scale studies on various pro-
gramming languages, tasks, and computer systems to point out the most energy-efficient
programming languages for developing specific tasks on selected computer platform types
(embedded, laptop, or server systems).

IPC technologies are the hubs between client and server systems to manage remote
shared data. To this end, many IPC technologies exist that are developed in different pro-
gramming languages in order to create, read, update, or delete remote data on the Inter-
net. Prior work [66, 32, 24, 98, 109] focused on investigating the energy consumption and
run-time performance of smart phones and embedded systems on Java implementations for
remote IPC such as RPC, REST, SOAP, andWebSockets. Considering that IPC technologies are
the major components of web services and used for every interaction with the users’ data,
it is essential to identify their energy and run-time performance while being developed in
different programming languages or executed in different computer platforms.

Unix-like OS’s are equipped with various services, background processes, and dae-
mons [163]. Among such services are the security mechanisms that protect computer
systems from attackers trying to exploit potential vulnerabilities. Such security mecha-
nisms can affect the energy consumption and the run-time performance of a computer
system. Prior studies have highlighted that CPU vulnerability patches can add a signifi-
cant computational overhead to an application (from 2% to 21%) [158, 140]. Likewise,
researchers have found that GCC safeguards such as stack canary [39] and Position Inde-
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pendent Executable (PIE) [88] can tax an application’s run-time performance from 6.5% to
18% [40, 177, 162, 123]. In terms of energy consumption, a number of studies have assessed
the energy implications of encryption algorithms [137, 129]. The authors have shown that
cipher algorithms can impact energy consumption from 60% to 150% [137, 129]. However,
none of the above studies have investigated the energy implications of CPU vulnerability
patches, encrypted network communications, the kernel’s memory zeroing, and GCC safe-
guards. Moreover, the aforementioned studies utilised a small number of test cases to ex-
amine the run-time performance implications of security mechanisms. Finally, no one has
examined how energy consumption is correlated with the run-time performance of different
tasks and security mechanisms.

To this end, we define the research goals of this thesis.

• To understand the energy-delay implications that various programming
languages have on different programming tasks and computer plat-
forms.

• To explore the energy-delay implications of various IPC technologies
that are implemented in different programming languages and running
on distinct computer platforms.

• To identify the energy and run-time performance taxing that security
measures (that shield modern OS) have on different types of computer
programs.

1.3 Proposed Solutions and Contributions
This dissertation aims to cover the challenges defined in the above section. To answer the
first challenge, we perform a large-scale empirical study where we examine the energy-delay
product (EDP), a weighted function that takes into account a task’s energy consumption and
run-time performance. We conduct the study on 25 programming tasks implemented in
14 different programming languages. Moreover, we evaluate the performance of the 14
programming languages on three computer platforms (i.e., embedded system, laptop, and
server). Also, we analyse our results and, further on, we try to reason on the outcome re-
garding the most energy-efficient and inefficient implementations.

To fulfill the second goal, we examine the energy and run-time performance of the RPC,
gRPC, and REST IPC technologies implemented in Java, JavaScript, C#, Go, Ruby, PHP, and
Python. Moreover, we perform our experiments on computer systems equipped with Intel
and ARM processors in order to point out which of the IPC implementations are the most
energy and run-time performance-efficient. We also investigatewhat are the reasons behind
the energy-efficient and inefficient implementations of IPC technologies by examining their
system calls and resource usage.

Last, we perform an empirical study to examine the energy and run-time performance
implications that security measures have on OS. Specifically, we investigate security mecha-
nisms related to (1) CPU vulnerability patches (i.e.,Meltdown, Spectre, and MDS), (2) mem-
ory (i.e.,memory zeroing), (3) communication (i.e., HTTP and HTTPS), and (4) compiler (i.e.,
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GCC safeguards). Although many of the above have been investigated in terms of run-
time performance, there is a limited amount of work that appraises their energy consump-
tion [158, 140, 40, 177, 162, 123, 137]. We perform our experiments on a rich dataset of
128 multi-purpose benchmarks running more than 300 tasks. Nevertheless, we try to figure
out the reasons that make certain vulnerabilities more energy-demanding, while we also
trying to identify which application types are more performance-sensitive to the associated
security mechanisms.

In summary, this thesis provides the following contributions:

• A customised and extended dataset 1 that can be used as a benchmark to investigate
the performance of various programming languages.

• A dataset 2 of 128 multi-purpose benchmarks that can be used to evaluate computer
systems performance.

• An empirical study 3 on programming language EDP implications, by using different
types of programming tasks and software platforms (see Section 4.1).

• A programming language-based ranking catalogue,4 in the form of heatmaps, where
developers can find which programming language to pick for particular tasks and plat-
forms depending on whether energy or run-time performance are important.

• An investigation on whether energy consumption and run-time performance of com-
puter systems are proportional (see Sections 4.2.3 and 4.3.2).

• An empirical study 5 identifying the energy-delay implications of various IPC technol-
ogy implementations.

• A study exhibiting the energy-delay impact that various security measures have on
different applications (see Section 4.3).

1.4 Thesis Outline
This thesis is separated in six chapters, outlined below.

Chapter 2 provides a taxonomy of studies associated with software engineering for energy effi-
ciency. Specifically, it presents tools and techniques that enable software practition-
ers to save energy through software engineering practices. Additionally, it illustrates
the state-of-the-art and presents the features and limitations of the existing body of
knowledge.

Chpater 3 describes themethods used in each study of this thesis such as (1) research questions,
(2) subject systems, (3) research approach, and (4) threats to validity.

1https://github.com/stefanos1316/Rosetta_Code_Data_Set
2https://github.com/stefanos1316/phoronixDataSet.git
3https://stefanos1316.github.io/my_curriculum_vitae/GKLS18.pdf
4https://github.com/stefanos1316/Rosetta_Code_Research_MSR/tree/master/heatmaps
5https://stefanos1316.github.io/my_curriculum_vitae/GS19.pdf

https://github.com/stefanos1316/Rosetta_Code_Data_Set
https://github.com/stefanos1316/phoronixDataSet.git
https://stefanos1316.github.io/my_curriculum_vitae/GKLS18.pdf
https://github.com/stefanos1316/Rosetta_Code_Research_MSR/tree/master/heatmaps
https://stefanos1316.github.io/my_curriculum_vitae/GS19.pdf
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Chapter 4 depicts the collated results of our studies in the form of graphs and tables.

Chapter 5 discusses regarding the collected energy and run-time performancemeasurements for
each one of the experiments and presents our reasoning on the outcomes.

Chapter 6 presents the thesis conclusions, contributions, and discusses potential future work
and research directions.

1.5 How to Read this Thesis
This thesis comprises four research studies on the development of energy-efficient software.
We advise to read the following instructions.

• The first chapter, Introduction, presents an overall view of the research challenges set
for this thesis and howwe address them. Therefore, we advise on reading this chapter
first because it shows the aims of this thesis.

• The Related Work chapter presents studies from various granularities of software en-
gineering. Note that this is our first research study and it can be read as a stand-alone
work.

• The remaining chapters present three more research studies. We advise to read first
the sections associated with the programming languages energy and delay implica-
tions from each chapter. Specifically, the reader may start by reading the Methods,
then the Results, after the Discussion and, finally, the Conclusions and Future Work.
Afterwards, the reader can repeat the same for the sections related to the remote
Inter-Process Communication (IPC) technologies and the security mechanisms study.

Meanings of the highlighted boxes
In this thesis, the boxes below denote:

Goals, where we elaborate on the aims of the specific research
study.

Contributions, where we discuss the significance and useful-
ness of our findings.

Key findings, wherewe present important results that emerged
from our studies.

Opportunities, where we illustrate opportunities for further re-
search.



Chapter 2

Related Work

In this chapter, we present a literature review that covers various phases of the Software
Development Life Cycle (SDLC) with respect to energy efficiency. Section 2.1 introduces the
importance of this field and discusses themethods used in order to obtain the dataset of the
examined studies. Sections 2.2, 2.3, 2.4, 2.5, and 2.6 outline the different categories that
compose this chapter. Finally, we discuss research opportunities in Section 2.7.

2.1 Background

A proposed method to counter IT’s growing energy hunger is through GreenIT: the practice
of designing, implementing, using, and disposing of IT-related products in an eco-friendly
way [103]. The concept of GreenIT has seen widespread adoption and acceptance from re-
search communities and organisations [65].

Initially, GreenIT was mostly adopted and considered at the hardware level. For exam-
ple, Bacha and Teodorescu [12, 13], Papadimitriou et al. [119] proposed firmware to reduce
the voltage margin and supply voltage without degrading the operating frequency of the
CPU to save energy. Leng et al. [81] showed the energy benefits obtained by reducing the
GPU’s voltage margin. Through a survey study, Mittal and Vetter [97] illustrated the energy
optimisation opportunities that non-volatile memories can offer.

Although hardware design and utilisation are undoubtedly key factors affecting energy
consumption, there is solid evidence that software design can also significantly alter the
energy consumption of IT products [29, 51, 48]. To this end, dedicated conference tracks
(e.g., GREENS,1 eEnergy2) have identified energy efficiency as an emerging research area for
reducing software energy consumption through software development practices. Existing
research studies in the area have tried to address some of the challenges for reducing en-
ergy consumption in software development by defining appropriate metrics, utilising energy
measuring tools, and proposing best practices. For example, Lago et al. [79] presented sev-
eral energy consumption metrics and classified them under various environments and pur-
poses. In the context of energy monitoring tools, Noureddine et al. [108] performed a study
to point out the current state-of-the-art by contextualising existing approaches regarding en-
ergy measuring tools for servers, personal computers, and smartphones. An initial study by

1http://greens.cs.vu.nl/
2http://conferences.sigcomm.org/eenergy/2017/cfp.php

6

http://greens.cs.vu.nl/
http://conferences.sigcomm.org/eenergy/2017/cfp.php
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Procaccianti et al. [138] shows 34 best practices3 that can improve the energy efficiency of
computer programs.

Overall, current research provides a fragmented view of the energy-efficient techniques
associated with the SDLC and examines only particular phases of it. This chapter intends to
fill this gap by presenting works in the development of energy-efficient software under the
holistic scheme of SDLC. For the presented studies, we focus on eliciting implications at each
phase of the SDLC, not only concerning energy consumption but also run-time performance,
where it is relevant. The goal is to guide researchers and software practitioners on existing
methods that can be beneficial and practical at each phase of software development.
Additionally, we aim to raise awareness regarding current difficulties and limitations.

This chapter contributes to the field of energy efficiency for software devel-
opment as follows.

• It provides an overall view, analysis, and taxonomy of existing technolo-
gies, tools, and techniques for each phase of the SDLC, i.e., Require-
ments (section 2.2), Design (section 2.3), Implementation (section 2.4),
Verification (section 2.5), andMaintenance (section 2.6), for energy ef-
ficiency.

• It identifies the state-of-the-art on energy-efficient design and devel-
opment, presents a critical review on different parameters which may
affect energy efficiency at each phase of the SDLC, and discusses limita-
tions and future challenges (section ??).

In the rest of this section, we explain our method for compiling related studies (subsec-
tion 2.1.1) and describe our approach for classifying them (subsection 2.1.2).

2.1.1 Methodology

This study aims to investigate dimensions that affect energy consumption at different phases
of the SDLC. In order to retrieve related studies, we composed search queries from the key-
words “energy” and “power”, combinedwith relevantwords, i.e., “software development life
cycle”, “software requirements”, “design patterns”, “parallel programming/computing”, “ap-
proximate programming/computing”, “coding practices”, “data structures”, “programming
languages”, “code analysis”, “benchmarks”, “monitoring tools”, “evaluation tools”, “mainte-
nance”, and “refactoring”.

We searched for relevant publications by querying the following digital libraries, jour-
nals, and magazines: IEEExplore, ACM, ACM Computing Surveys, Springer, ScienceDirect,
IEEE Software Magazine. Initially, we had restricted our search spectrum only to the main
tracks of the top software engineering conferences as proposed by Pinto et al. [130]. How-
ever, the field of energy efficiency in software development is relatively new, hence related
studies published in these venues are still sparse. Therefore, we extended our search to
other energy- and software-related conferences and workshops to enrich our dataset. Addi-
tionally, when a retrieved paper was on a topic close to our interests, we used the backward

3wiki.cs.vu.nl/green_software/

wiki.cs.vu.nl/green_software/
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Figure 2.1: Software Development Life Cycle for Energy Efficiency Taxonomy

reference searching process (examining the references of the corresponding paper) to track
down supplementary relevant publications .

2.1.2 Energy Efficiency in the Context of SDLC

In this chapter, we limit our scope of interest in existing work related to the energy efficiency
focused at each phase of SDLC, i.e., Requirements, Design, Implementation, Verification, and
Maintenance, following the waterfall model [149]. Although the SDLC waterfall model is an
outdated software development approach, it is still useful as a reference model for cate-
gorising the area’s research. In Figure 1, we present the mapping of the energy efficiency
techniques and tools under the SDLC process. Following this classification, we structure this
chapter accordingly to provide a complete view of existing tools and techniques for energy-
aware software development.

The Requirements phase (section 2.2) describes aspects and needs relevant to the de-
velopment of software projects/systems when the energy efficiency is compulsory. During
the Design phase (section 2.3), software design patterns document best practices used for
solving common ground problems or poor design decisions taken during the development of
an application that can impact the energy consumption. Implementation phase (section 2.4)
clusters methods/practices, namely Parallel Programming, Approximate Computing, Source
Code Analysis, Programming Languages, Data Structures, remote IPC technologies, and Cod-
ing Practices, which practitioners can adopt to reduce the software’s energy consumption
when developing. The Verification phase (section 2.5) considers metrics and tooling support
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aiming to evaluate the software’s energy consumption before its deployment. Maintenance
(section 2.6) is the phase that aims to apply refactoring patterns/techniques on a deployed
application to reduce its energy consumption.

2.2 Requirements

The classification of energy efficiency for the SDLC falls under the non-functional require-
ments such as run-time performance and security. We present relevant work on require-
ments, concentrating on suggestions gathered by surveying practitioners and on results
based on empirical evaluation. Accordingly, we divide the Requirements section into two
subsections: survey studies and empirical evaluation requirements.

Table 2.1: Collected Requirements and Identified Limitations

Platform Study Type Identified Limitations Source

Smartphones Survey In programmers education Pang et al. [115]
Workstations and
Smartphones

Empirical
Evaluation

On sustainability model for
software development Beghoura et al. [18]

Smartphones Survey
On guidelines, support infras-
tructure, and reasonable cost
of a given task

Manotas et al. [93]

2.2.1 Survey Studies

Mobile devices aremore energy-dependent than servers or workstations; therefore, it is cru-
cial to adopt an energy-conscious approach and consider the battery life, as a limitation, be-
fore developing amobile application. A qualitative study conducted byManotas et al. [93] ex-
amined green, energy-efficient software engineering perspectives of 464 practitioners from
ABB, Google, IBM, and Microsoft software development departments. Although the study
concerned different computing systems, specifically, i) mobile, ii) embedded systems, and iii)
data centers, the practitioners expressed ideas, mostly, on how to reduce energy consump-
tion on mobile applications. Some of the practitioners also provided examples regarding the
sustainability of smartphones energy consumption, such as: “turn-by-turn guided naviga-
tion should not drain more battery than the car can charge”, “under normal usage, a device
with an XW h battery should last for Y hours” [93]. Additionally, practitioners suggested that
particular tasks be executed without disturbing the users about battery drain.

Likewise, Pang et al. [115] performed a study surveying on-line 122 programmers and
concluded in line with Manotas et al. that software practitioners mostly consider energy
consumption as a requirement for mobile application development. To this end, the authors
argued that developers could extract energy-efficiency requirements by correlating appli-
cation functional requirements with the corresponding software components’ energy con-
sumption. To accomplish this, a consistent body of knowledge and understanding of software
and hardware interaction is necessary. The authors listed the following relevant instructions
that developers can take into account:
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• Bulk Operations, in order to keep I/O calls minimum.

• Hardware Coordination, such as minimising memory access.

• Concurrent Programming, such as selecting appropriate thread constructs.

• Efficient Data Structures, selecting less energy-greedy data structures.

• Loop Transformation, such as loop fusion to reduce control operations.

• Data Compression, to reduce file sizes before transmitting them.

• Offloading Methods, by calculating heavy operations remotely, i.e., cloud.

• Approximate Programming, to reduce unnecessary precision of computations.

2.2.2 Empirical Evaluation Studies

An approach to identifying non-functional requirements in order to reduce energy consump-
tion in software development has been proposed by Beghoura et al. [18]. The authors fo-
cused their study on desktops and smartphones, where they argued that, to meet energy-
efficient software development, it is necessary to identify the characteristics and require-
ments of the software. Along these lines, a practitioner may consider four characteristics for
providing energy-efficient requirements for different types of systems, namely:

• Computations, to optimise energy consumption through less expensive computations
(CPU-bound).

• Data Management, to reduce the amount of I/O operations, because they are slow
and expensive for a computer system (storage-bound).

• Data Communication, to mind the amount of data sent or received through a network
channel (network-bound operations).

• Energy Consumption Awareness, to provide energy-related information for individual
software layers (e.g., through energy profiling tools) and for the software as a whole.

To this end, Beghoura et al. developed a tool for testing application requirements, by es-
timating the energy consumption of CPU, RAM, and NIC. Similarly to Pang et al. andManotas
et al., Beghoura et al. identified the importance of adding the energy-efficiency of software
development in the early stage of the software development process. Moreover, Pang et al.
and Manotas et al. suggested the proper education and guidelines can support developers
in building energy-conscious software.
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2.3 Design

Proper design decisions are crucial when it comes to energy-efficient software development,
as the software components and their interactions can alter significantly energy consump-
tion. In the subsequent subsections, we present studies that evaluate the energy implica-
tions of design patterns [54] or recommend adjustments for optimising them in terms of
energy consumption. We also indicate cases where inappropriate design decisions lead to
increased energy consumption.

Table 2.2: Design Patterns Empirical Evaluation on Energy and Run-Time Impact

Study Type Implications (avg. in %) Platforms Source
Pattern Energy Run-Time

Flyweight 58.00 –
Proxy 36.00 –
Mediator 9.56 –
Composite -5.14 –
Abstract
Factory

-21.55 –

Observer -62.20 –

Empirical
Evaluation

Decorator -712.89 –

Embedded
System Sahin et al. [151]

Empirical
Evaluation

Decorator -133.60 -132.40

Smartphone Bunse et al. [26]Prototype -33.20 -33.00
Abstract
Factory

-14.20 -14.20

Observer 4.32 –Patterns
Optimisation Decorator 25.47 – Workstation Noureddine and Rajan

[105]

2.3.1 Empirical Evaluation of Design Patterns

Design patterns are general and reusable solutions to commonly appearing software design
problems. In the context of design patterns, Sahin et al. [151] and Bunse et al. [26] performed
empirical studies where they compared the energy consumption of selected patterns. Both
studies evaluated design patterns from the creational, structural, and behavioral categories
introduced by Gamma et al. [54].

Specifically, Sahin et al. examined the energy consumption of different applications4 run-
ning on an embedded system, with and without the application of design patterns. The
authors illustrated a method of correlating software design and energy consumption that
helps software developers understand the trade-offs of their design decisions with energy
consumption. For their experiment, they used 15 out of the existing 23 design patterns. As
an outcome, three out of the 15 used patterns resulted in substantial energy savings, while
the remaining resulted in mini-scale changes or negatively affected energy consumption. In

4https://sourcemaking.com/

https://sourcemaking.com/
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particular, the Flyweight, Mediator, and Proxy patterns resulted in energy savings when ap-
plied on selected applications, while the Decorator pattern tremendously increased energy
consumption.

Bunse et al. focused on evaluating the energy consumption and run-time performance
impact of design patterns on Android applications. The authors observed an increase in both
energy consumption and execution time after applying six out of the 23 design patterns (Fa-
cade, Abstract Factory, Observer, Decorator, Prototype, and Template Method) on selected
applications.

The results summarised in Table 2.2 show that even in between instances of applying
the same design patterns, large variations in energy consumption exist. For instance, ac-
cording to the results of Bunse et al. the Decorator pattern increased energy consumption
by 133%, while Sahin et al. found a significantly higher energy consumption, i.e., 712%; this
might occur because Bunse et al. employed a smartphone and Java-based code snippets to
experiment with, while Sahin et al. used an embedded system and code snippets written in
C++.

In conclusion, both Sahin et al. and Bunse et al. observed the negative impact of spe-
cific design patterns in embedded and smartphone devices regarding energy consumption.
Moreover, Bunse et al. showed that particular design patterns causing high energy consump-
tion were also contributing to lower run-time performance. As stated in both studies, the
number of objects and communications among the software components comprise primary
factors for increasing energy consumption. Both studies identified the Decorator and Ab-
stract Factory as the most energy-inefficient design patterns. Additional work using specific
benchmarks may help understand in depth the effects of design patterns in diverse applica-
tions and platforms.

2.3.2 Energy Optimisation of Design Patterns

Structural changes in the design patterns can lead to significant energy optimisations as pre-
sented by Noureddine and Rajan [105]. Initially, the authors performed an experimental
study where they manually applied 21 different design patterns on eleven applications writ-
ten in both C++ and Java. Their experiment revealed the Observer and Decorator as the
most energy-greedy design patterns. The authors transformed the existing source code, by
reducing the number of created objects and function calls, and accomplished important en-
ergy savings. Specifically, after optimising the Observer and Decorator design patterns, the
authors reduced the applications’ energy consumption by 10%, on average.

The work of Noureddine and Rajan (like Sahin et al.) lacks run-time performance mea-
surements. Consequently, it is uncertain how the design pattern optimisations affected
an application’s execution time. However, such design pattern optimisations seem to be
a promising area for further investigation. Moreover, as pointed out by Noureddine and Ra-
jan, by identifying and optimising the interactions of different software components can help
in reducing an application’s energy consumption.
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2.4 Implementation

In the Implementation phase, there are several tools, techniques, and strategies that soft-
ware practitioners can exploit to improve the energy consumption and run-time perfor-
mance of their applications. To this end, we present research results associated with pro-
gramming techniques, source code analysers, programming languages, and so on.

2.4.1 Parallel Programming

Parallel programming is the process of breaking a large problem into smaller ones to solve
them simultaneously. In this section, we discuss works that empirically evaluate applications
and algorithms that utilise parallel computing. Table 2.3 summarises implications of related
thread management strategies and applied adjustments on energy consumption and run-
time performance for different application types. Fields with negative values indicate an
increase in energy consumption or execution time for the corresponding study.

2.4.1.1 Experimental Studies

By performing an empirical study, Kambadur and Kim [72] identified configurations and pa-
rameters that can reduce the energy consumption of parallel applications. The authors com-
pared nine existing energy management strategies by using a standardised system architec-
ture, OS, measuring tool, and five benchmark suites. The strategies such as Processor Fre-
quency Tuning, Overclocking, Parallelism, and Compiler Optimisation were run on 220
experimental configurations and tested on 41 applications totaling in more than 200,000
executions. The obtained results highlight the importance of effective source code paralleli-
sation by employing the appropriate number of threads (see Table 2.3).

To evaluate the energy efficiency of different thread management constructs, Pinto et al.
[135] performed an empirical study comparing three constructs (i.e., explicit thread creation,
fixed-size thread pooling, and work stealing) on nine benchmarks by adjusting the number
of threads, the task’s granularity level, the data size, and the nature of the data access. The
authors observed that the constructs’ energy consumption vary in different situations. For
example, explicit thread creation exhibits the lowest energy consumption when it comes
to I/O-bound applications. For highly parallelised benchmarks, work stealing outperforms
explicit thread creation and fixed-size thread pooling by being 30% more energy-efficient;
however, for more serialised benchmarks, work stealing is under-performing. Also, the au-
thors noticed that energy consumption increases as the number of threads increases. This
occurs until the number of threads reaches the number of CPU cores. Afterwards, the au-
thors detected a reduction in energy consumption for most of the tested applications.

As we can see in Table 2.3, the gains and losses concerning energy consumption and run-
time performance are feasible by selecting the appropriate number of threads. For instance,
both Pinto et al. and Kambadur and Kim tuned the numbers of threads to evaluate their
applications. By using different thread management constructs and a various number of
threads, Pinto et al. altered energy consumption from −50% to 30%, while Kambadur and
Kim decreased it by 55%, on average. A major distinction between the two works, that can
explain the discrepancies in results, is that Pinto et al. used Java applications, while Kambadur
and Kim utilised Java and, also, C programs with compiler run-time optimisation flags.
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Table 2.3: Parallel Programming Energy and Run-Time Impact

ThreadMan-
agement

Adjustments Implications (in %) Application
Type

Source
Energy Run-Time

Effective
Parallelizationc

From 1 to 16
Threads 55 avg. 69 avg. CPU & GPU

boundd
Kambadur and
Kim [72]

Parallelization &
ThreadManage-
ment Constructs

Explicit
Threading

– – I/O-bounde

Work
Stealing

(−50) –
30

(−23) –
10

Embarrassingly
Parallelf

Pinto et al. [135]

Pack & Capa
Criticality
level DVFS 56 avg. Unaffected CPU-boundb Cai et al. [27]

Work
Stealingg

Load-base
DVFS 11–12 (−3)–

(−4)
CPU & GPU
boundh

Ribic and Liu
[147]

a Collecting threads under the same core and reducing its frequency.
b Recognition-Mining-Synthesis (RMC), an Intel’s application [34].
c Statically selecting the effective number of threads.
d Parsec 3.0, SPLASH-2X, SPEC CPU 2006, DaCapo 9.12, SPEC JBB 2013.
e Application such as Largestimage.
f Applications such as Sunflow, Spectralnorm, N-Queens, Tomcat.
g “Underutilised processors take the initiative: they attempt to steal threads from other proces-
sors” [20].

h Applications from Problem-Based benchmark suite [156].

As shown above, performing experiments with a varying number of threads or thread
management constructs can help practitioners identify the configurations most likely to
reduce the energy consumption and execution time of their applications. However, user
interaction is mandatory to point out the best configurations and parameters through
experimentation—a fact thatmakes the selection process time-consuming and cumbersome
especially for applications that run for a very long time or need to run on heterogeneous
computer systems (e.g., different processor architectures or memory hierarchy).

2.4.1.2 Algorithms

To take advantage of parallel processing, Cai et al. [27] and Ribic and Liu [146] developed
algorithms to minimise the energy consumption by efficiently managing thread workloads.
According to Cai et al., most of the Dynamic Voltage Frequency Scaling (DVFS) techniques—a
mechanism that tunes CPU voltage to adjust its frequency based on the current workload—
are not built to run on multi-threaded processors; therefore, they are unable to save a con-
siderably large amount of energy. To this end, the authors suggested thread shuffling, a way
of combining techniques such as thread migration and DVFS to reduce the energy consump-
tion of an application without compromising its run-time performance. The basic idea be-
hind thread shuffling is to identify threads with the same thread critical degree (slow threads
execution) by using a prediction algorithm andmap them under the same core via threadmi-
gration. Afterwards, the algorithm applies voltage dynamically to scale the cores’ frequency
for the cores housing non-critical threads (fast threads execution).
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Likewise, Ribic and Liu introduced HERMES, a strategy for work-stealing that employs a
thief-victim approach. The authors refer to thief as the thread which finishes its tasks and
steals work from other threads, the so-called victims. HERMES is composed of two main al-
gorithms, theworkpath-sensitive andworkload-sensitive. Theworkpath-sensitive algorithm
defines a thread’s tempo (execution speed) based on the thief-victim’s relationship; that
means, when a thief steals from a victim worker, its tempo is set lower (because it always
steals insignificant tasks) and it is raised once the victim runs out of work. The workload-
sensitive algorithm is a work-flow based tuning mechanism for the workers execution tempo
that, if necessary, adjusts the core’s frequency via DVFS to reduce energy consumption. For
instance, if a worker’s queue is empty, it tries to steal work from other workers; afterwards,
it adjusts its core’s frequency according to its workload.

In the aboveworks, both thread shuffling andHERMESutilise DVFS techniqueswithwork-
load migration to accomplish energy savings. However, as discussed above, both of them
utilise DVFS in a different way. As a result, the work-stealing approach of HERMES resulted
in minor energy savings viz-a-viz the thread shuffling technique which resulted in 56% of
energy savings, on average, as illustrated in Table 2.3. In conclusion, HERMES provided en-
ergy savings with a minor run-time performance penalty (i.e., 3–4%), while thread shuffling
achieved compelling energy savings without compromising run-time performance at all (see
Table 2.3).

2.4.2 Approximate Computing

Approximate computing is an approach for sacrificing computation accuracy—when an ap-
plication tolerates it—to increase run-time performance or energy savings [96]. For instance,
techniques such as loop perforation are employed, that allow users tomanage run-time per-
formance and accuracy trade-offs based on the desired output quality [157]. In this section,
we discuss studies divided into programming frameworks, memoisation, annotation-based,
and directive-based extensions. In Table 2.4, we summarise the corresponding works opti-
misation focus, the average (if avg. is present next to associated work) energy and execution
time reduction, and the precision loss introduced by each algorithm.

2.4.2.1 Programming Frameworks

For their research, both Misailovic et al. [95] and Baek and Chilimbi [14], introduced energy-
conscious programming frameworks to achieve energy savings through approximate com-
putations. Specifically, Misailovic et al. proposed Chisel, an optimisation framework that
acts in an automated manner by selecting approximate kernel operations that result in en-
ergy, reliability, and accuracy optimisations. Baek and Chilimbi suggested GREEN, a frame-
work aiming to optimise expensive loops and functions by considering user-defined Quality
of Service (QoS) requirements. GREEN achieves energy savings through approximate compu-
tations for functions and early loop termination. Moreover, it addresses the QoS and energy
consumption trade-offs by applying approximate programming techniques only when the
QoS requirements are fulfilled. A common element of both GREEN and Chisel is the compar-
ison between precise and approximate instances for calculating the reliability of the results.
However, what differentiates GREEN from Chisel is the periodical run-time QoS sampling to
adjust its approximation techniques andQoSmodel tomeet the target requirements. In con-
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Table 2.4: Approximate Computing Energy and Run-Time Impact

Name Optimisation Focus Implications (in %) Precision Source
Energy Runtime Loss in %

GREEN
Computations and
loop termination 14 avg. 21 avg. 0.27 Baek and Chilimbi [14]

– Function memoisa-
tion 74 avg. 79 avg. < 3 Agosta et al. [9]

Parrot
Optimises regions
of imperative code 66 avg. 56 avg. 10

avg. Esmaeilzadeh et al. [50]

Chisel
Computational ker-
nel operations 9–20 – < 3 Misailovic et al. [95]

EnerJ
Computations,
Data Storage, and
Algorithmica

10–50 – – Sampson et al. [155]

Axilog Source code parts 54 avg. – 10 avg. Yazdanbakhsh et al. [173]

– Selected group of
tasksb

– – – Vassiliadis et al. [169]

DCO
Scorpio

Selected group of
tasksb 56 avg. – – Vassiliadis et al. [170]

a Programmer can write two different implementations, one is invoked when the data are precise
and the other when they are approximate

b Allows the developer to set which computation tasks, from a group, are going to be executed
approximately/precise

trast to GREEN, Chisel is utilising the approximatememory of its running platform to increase
energy savings by sacrificing some of its quality output (see Table 2.4).

2.4.2.2 Annotation-Based Extensions

Sampson et al. [155], Esmaeilzadeh et al. [50], and Yazdanbakhsh et al. [173] proposed En-
erJ, Parrot transformation, and Axilog, respectively; all are extensions that achieve energy
savings by executing approximately annotated source code portions. Specifically, EnerJ is
a Java-based extension, furnished with a manual annotation functionality for defining ap-
proximate or precise data selection for an application. By declaring variables and objects
as approximate, EnerJ maps them to approximate memory5 and generates low-cost energy
code by using approximate operations and algorithms. Parrot transformation is a neural net-
workmodel that identifies approximable code regions—code that can produce imprecise but
acceptable results—and offloads them to neural processing unit, instead of CPU, to increase
energy and run-time performance. Axilog is a Verilog extension composing brief and high-
level annotations for full control and governance of approximate hardware. In contrast to
the manual annotating approach of EnerJ and Parrot, Axilog employs a Relaxability Inter-
face Analysis algorithm to automate the approximation processes based on the designer’s

5memory parts with reduced voltage or refresh rate such as cache, registers, functional units, and main
memory.
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choices. All three annotation systems offer a safety mechanism for isolating approximate
from precise portions of code, thus guaranteeing the main functionality of an application.

In contrast toGREEN, Chisel, andAxilog, in EnerJ and Parrot the developers are thewheel-
holders of the applied approximation techniques, by selecting which code portions to be
executed as precise. Therefore, EnerJ and Parrot can help practitioners better understand
the energy-approximation trade-offs of their design choices.

2.4.2.3 Directive-Based Extensions

Another approach for applying approximation techniques on computational tasks is to rely
on their significance level (level of importance or criticality). To this line, Vassiliadis et al.
[169, 170] proposed directive-based approaches to reduce application energy consumption
by using approximate techniques. In the first work [169], the authors proposed a program-
ming model aiming to elicit the highest level of accuracy for an application according to a
user-defined energy budget. Therefore, the authors introduced a run-time system that is
responsible for choosing the appropriate configurations, (i.e., number of cores, clock fre-
quency, and accuracy ratio) for a specific input size. The appropriate configurations are in-
ferred by a model which is trained to identify the configurations that provide the highest
possible output accuracy for a given energy budget. Another approach is DCO/Scorpio, a
framework suggested by Vassiliadis et al. [170] that supports automated analysis to identify
the code’s significance level. DCO/Scorpio accomplishes that by employing interval arith-
metic [141] and algorithmic differentiation [104] to quantify the significance of particular
computations for a specific input. This output is in turn used by an OpenMP-like model to
classify the computations in task groups according to their significance level. Thus, it pro-
vides approximate methods based on each group’s significance level.

DCO/Scorpio and the work presented in reference [169] differ in that the former reduces
the energy consumption of an application, while the latter achieves the highest possible
output quality within a specific energy consumption threshold. Also, DCO/Scorpio sets the
computation tasks significance, while Vassiliadis et al. [169] require the programmer’s in-
volvement to input directives for critically important parts of the code that do not tolerate
imprecision.

2.4.2.4 Memoisation

Another approach for saving energy through approximate computing is by using memoisa-
tion to store expensive function call results. Agosta et al. [9] developed a performancemodel
to select and memoise computationally intensive function from financial applications and
JavaGrande benchmark. Compared to the above approaches, memoisation seems to have
the highest energy savings and run-time performance (see Table 2.4). However, the authors
did not apply their method to real-world applications.

2.4.3 Source Code Analysis
Source code analysis is a testing process that focuses on revealing defects and vulnerabilities
in a computer program before its deployment phase. In this section, we discuss works on
dynamic source code analysis that aim to identify energy-related bugs and hot-spots by test-
ing a computer program at real-time. In the context of source code analysis, we did not find
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Table 2.5: Source Code Analysis Related-Work Information

Tool Name Platform Energy Measurement
Correlation

Error Mar-
gin (in %)

Source

Eprof Android &
Windows OS

Process, Threads, Sys-
tem calls, Routines 6< Pathak et al. [121]

eLens Android
Full Source Code
Granularity 10 Hao et al. [61]

GreenAdvisor Android Routines, System-calls – Aggarwal et al. [7]

PEEK Embedded
Function Level Sys-
tems

– Honig et al. [68]

SEEDS Java Platforms
User can set which
portion to analyse

– Manotas et al. [92]

– Smartphones Function Level – Banerjee et al. [17]

available tools for static code analysis that provide rules for analysing source code before
execution. Table 2.5 shows works on source code analysis and provides information on the
target platform, energy measurements correlation at various software granularities, and the
margin of error.

2.4.3.1 System Calls

GreenAdvisor is a system calls profiler that predicts behavior, run-time performance, and
energy-related modifications of an application [7]. To predict energy-related changes,
GreenAdvisor compares the number of system calls on a current version of an application
and its previous one. If energy consumption increases, it pinpoints the energy hot-spots
that caused the changes, thus helping developers in analysing and understanding the impli-
cations of their decisions.

To diagnose energy bottlenecks at the source code level, Pathak et al. [121] presented
Eprof, a system-call based powermodeling tool for smartphone applications. To achieve high
accuracy in energy consumption measurements, Eprof incorporates two components. First,
it uses finite state machines to model different power states and transitions for individual
hardware components, and the smartphone as a whole. Then, for each hardware compo-
nent, it runs a benchmark suite that consists of applications for collecting the different system
calls and their power transitions. Afterwards, it generates rules for the finite state machines
by integrating the collected knowledge from the executed applications. To estimate energy
consumption at the source code level, Eprof cross-references routines (blocks of code) with
system call traces. By using Eprof, the authors found that applications using third-party pro-
cesses tend to have a 65–75% increase in energy consumption.

Overall, the above-discussed tools are utilising distinct energy estimation models to
present energy measurements. For example, Eprof employs a model that calculates the en-
ergy consumption of an application at the routine level and various hardware components,
whileGreenAdvisor compares the energy consumption of different versions of a product and
points out the system calls that caused the change.
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2.4.3.2 Optimisation Tools

Honig et al. [68] andManotas et al. [92] recommended tools for dynamic source code analy-
sis. Both Honig et al. and Manotas et al. suggested energy-aware programming approaches
to guide developers during the implementation phase by providing energy-related hints.
Honig et al. presented the Proactive Energy-awarE development Kit (PEEK), while Mano-
tas et al. promoted the Software Engineer’s Energy-optimisation Decision Support (SEEDS)
framework. Periodically, both approaches analyse the source code under development and
seamlessly create many different instances from the current source code to identify opti-
mal code modifications. However, a significant difference between the two approaches is
that PEEK’s energy-associated hints are related to power management mechanisms (e.g.,
sleep state, DVFS, idle state, program-code logic, libraries, and compiler run-time optimisa-
tion flags) while SEEDS’ suggestions are limited to Java Collection Libraries (JCL), algorithms,
or refactoring parts of the source code. Besides, SEEDS offers to developers the possibility to
set a code block range for analysis while PEEK analyses source code at function granularity.

2.4.3.3 Tests Generation Framework

Another way for identifying energy-related bugs is through an automated test generation
framework, introduced by Banerjee et al. [17]. The aforementioned research points out
energy-related hot-spots in four categories of smartphone applications which are 1) hard-
ware resources, 2) sleep-state transitions, 3) background services, and 4) defective function-
ality. First, a detection process is invoked to search for possible user interactions through
event flow graphs. Then, the advocated framework generates test cases to capture inter-
action scenarios and, subsequently, to identify energy hot-spots. Alongside the energy hot-
spots identification, the tool issues test reports for the developers. However, compared to
thework of Honig et al. andManotas et al., the work of Banerjee et al. does not provide hints
for energy optimisation, but only finds the energy-wasteful parts of an application.

2.4.3.4 Line-by-Line

To measure application energy consumption at different levels of the software granular-
ity and raise energy-awareness during the development phase, Hao et al. suggested eLens.
eLens estimates energy consumption via program analysis and per-instruction powermodel-
ing. The authors use program analysis to obtain execution-related information such as byte-
code or API calls from various smartphone components (e.g., CPU, RAM, GPS, 3G). Then, the
collected information is passed to the per-instruction power modeling component to esti-
mate an application’s energy consumption. Thus, eLens provides energy measurements at
various levels of granularity: application, method, class, path, and source code lines. Com-
pared to all presented tools, eLens is the only one that provides energy measurements at
all levels of source code granularity, thus raising energy-awareness by providing fine-grained
information on application consumption.

2.4.4 Programming Languages

Programming languages offer a set of instructions that allow users to utilise system resources
to solve a problem. Languages differ in features and theway they allocate and use computing
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Table 2.6: Programming Languages Energy and Run-Time Impact

Comparing
X to Y

Implications (avg. in %) Flags Env. Apps Source
Energy Run-Time

C++ to C 8.40 8.67
C++ to Java 47.40 38.12
C++ to Python 166.28 195.17
C to Java 38.39 29.08
C to Python 106.40 195.50
Java to Python 195.87 194.77

–O3 – All Appsa Abdulsalam et al.
[4]

C++ to Java 166.14 159.13
–O3

Dalvikb Quick
Sort

Chen and Zong
[33]

C++ to Java Identical Identical ARTc
C to C++ Identical 3.38 – – Fibonacci
ARM-assembly
to C

15.38 10.52

– –

Counting
Sort

ARM-assembly
to Java

58.84 90.90 Counting
Sort

Rashid et al. [143]

a Fast Fourier, Quick Sort, Linked List
b https://source.android.com/devices/tech/dalvik/
c Android Run-Time (ART) https://source.android.com/devices/tech/dalvik/

resources. In this section, we examine empirical studies investigating the energy consump-
tion and run-time performance implications of programming languages. We also discuss
studies related to the energy and run-time performance of compiler optimization flags. Ta-
ble 2.6 lists related works in terms of energy consumption, run-time performance, employed
optimisation flag, and test cases. The results in Table 2.6 depict the energy and execution
time reduction of using the X instead of the Y programming language (see Table 2.6). We
summarise related results in a consolidated list, found in Table 2.6, of average values calcu-
lated by us for the work of Abdulsalam et al. [4].6 For instance, we calculated the average
energy consumption and run-time performance of C for all the investigated programming
task selected by Abdulsalam et al. We performed such an action because the authors offered
many results and we wanted to give a compact view on their findings. Table 2.8 illustrates
works related to compiler types, used optimization flags, target platforms, and test cases.

2.4.4.1 Different Programming Languages

The studies presented in this section are based on different experimental platforms. Particu-
larly, Abdulsalam et al. [4] performed their tests on a workstation, Rashid et al. [143] used an
embedded system, and Chen and Zong [33] conducted their experiments on a smartphone.
However, Abdulsalam et al. and Chen and Zong used similar testing parameters, as depicted
in Table 2.7. Furthermore, Abdulsalam et al. also compared the energy implications of four
memory allocation methods (i.e., malloc, new, array, and vector) where they presented
malloc as the most energy- and run-time-performance-efficient.

6https://github.com/stefanos1316/Proof_for_Survey/blob/master/Programming_Languages_
Average_Values.txt

https://source.android.com/devices/tech/dalvik/
https://source.android.com/devices/tech/dalvik/
https://github.com/stefanos1316/Proof_for_Survey/blob/master/Programming_Languages_Average_Values.txt
https://github.com/stefanos1316/Proof_for_Survey/blob/master/Programming_Languages_Average_Values.txt
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Table 2.7: Programming Languages Configurations

Programming Optimisation Target Test Cases Source
Languages Flags Platforms

C, C++, Java, and
Python –O{1,2,3}

Server
system

Fast Fourier, Linked
List, Quick Sort Abdulsalam et al. [4]

ARM-assembly,
C, and Java

– Embedded
system

Bubble, Counting,
Merge Quick Rashid et al. [143]

C, C++, and Java –O{1,2,3}
Android
devices

Fibonacci, Tower of
Hanoi, Pi calculation Chen and Zong [33]

In their experiment, Chen and Zong utilised the Native Development Kit7 toolset for ex-
ecuting native code such as C and C++ inside Android applications. The derived results, by
both Abdulsalam et al. and Chen and Zong, is that C and C++ achieved significant energy
savings and, also, reduced execution time against the other programming languages. Also,
both works showed that the run-time compiler optimisation flag –O3, had the most signif-
icant energy savings and increased run-time performance for workstation and smartphone
applications. Moreover, for Java applications, Chen and Zong showed that the use of An-
droid Run-Time instead of Dalvik run-time environment, contributed to energy and run-time
performance results similar to the C and C++ implementations.

In the context of embedded systems, Rashid et al. performed an experiment to com-
pare the energy and run-time performance implications of four sorting algorithms written in
ARM-assembly, C, and Java. By performing their experiments on a Raspberry Pi,8 the authors
showed that the implementations of ARM-assembly achieved the most energy-efficient re-
sults viz-a-viz the C and Java implementations. Likewise, Rashid et al. presented Java as the
most energy-hungry among the selected programming languages.

Table 2.6 illustrates the superiority of compiled programming languages against the in-
terpreted and semi-compiled,9 in terms of energy consumption and run-time performance.
Java and Python suffer the most from high energy consumption and low run-time perfor-
mance. The use of an interpreter makes Python slower and less energy-efficient, because it
has to interpret source code for each execution. Moreover, the dynamic compiling, library
linking, and interpretation of byte-code in JVM are additional burdens on the execution of
Java programs. However, Chen and Zong showed that the use of the Android Run Time
environment could reduce the energy consumption and increase run-time performance of
Android applications.

A limitation that we observed, for all the discussed works, is the lack of information re-
garding the versions of the employed compilers, interpreters, modules, and libraries used in
the experiments. Additionally, we did not find any research study that compares the energy
consumption and run-time performance implications of the same application across differ-
ent compiler versions, run-time engine, or interpreter.

7https://developer.android.com/ndk/index.html
8https://www.raspberrypi.org/
9Semi-compiled languages compile source code into intermediate code and execute it on a VM.

https://developer.android.com/ndk/index.html
https://www.raspberrypi.org/
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Table 2.8: Compiler Optimizations Energy and Run-Time Impact

Compilers Flags Platform Test Cases Source

GNU GCC 82 options Embedded
systemsa

MiBenchb and
WCEc Pallister et al. [113]

GNU GCC
Run-Time
Performance Laptop 6 tasksd

Branco and Hen-
riques [25]

GNU GCC
Run-Time
Performance

Embedded
system MMC suite Patyk et al. [122]

MigGW, Borland C++,
Visual C++, Gygwin

Run-Time
Performance Workstation Sample Code Hassan et al. [64]

a cortex-m0, cortex-m3, cortex-a8, xmos, epiphany
b A free, commercially representative embedded benchmark suite
c Worst Case Execution Time
d MMC, Grades, Bzip, Bzip2, Oggenc, and Pbrt

2.4.4.2 Compiler Optimizations

Compilers are computer programs that translate high-level language code to binary code.
Also, they offer a large number of options to optimize run-time performance, memory usage,
or even protect the source code against malicious uses. Several studies have investigated
the run-time and energy performance of the GCC compiler. Specifically, Pallister et al. [113]
examined the energy consumption of several GCC’s performance optimization flags by using
fractional factorial design [59] to account for interactions among the optimization on various
multi-purpose benchmarks and different embedded systems. Their results suggest thatmost
of the optimizationflags affected energy consumptionand run-timeperformance in the same
way. Also, the authors have shown that it is possible to achieve energy savings up to 4%
after compiling applications with a certain set of compiler flags. Likewise, Patyk et al. [122]
suggested a statistical approach to automatically identify the optimal compiler options to
reduce energy consumption. The authors achieved energy savings of 15% on average.

Some authors showed that compiler run-time optimization flags (-O1 to -O4) contribute
to reduced energy consumption. In particular, Branco and Henriques [25] investigated the
energy implications of C, C++, Objective-C, and Go programs. By experimenting on 12 bench-
marks, the authors found that optimised code equals to greater energy savings. Similarly,
Hassan et al. [64] have investigated the energy implications of run-time optimization flags
but on different compiler i.e., MinGW GCC, Cygwin GCC, Borland C++, and Visual C++. Their
results suggest that major energy and run-time performance gains exist among the different
compilers.

In conclusion, the above works present that major energy savings are available through
compiler optimizations. Nevertheless, none of the above studies have investigated the en-
ergy consumption of GCC’s safeguards against buffer overflow attacks (stack canary), read-
only relocation (RERLO), address space layout randomisation protections, and so on.
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Table 2.9: Data Structures Energy Impact

Interface Library Data Structure Energy (in %) Apps Source

C5 HashedLinkedList 23.27 Appsa Michanan et al. [94]
JCF AttributeList 24.88 CEBb Pereira et al. [124]

ArrayList 38.00 Gson
JCF LinkedList -309.00 SETSc Hasan et al. [63]List

JCF LinkedHashMap 50.16 CEBb Pereira et al. [124]
JCF ConcurrentHashMapV8 17.80 XALANMap
JCF ConcurrentHashMapV8 9.32 TOMCAT Pinto et al. [136]

C5 HashSet 31.44 Appsa Michanan et al. [94]
Set JCF LinkedHashSet 12.50 CEBb Pereira et al. [124]

Queue JCF

LinkedTransferQueue,
LinkedBlockingDeque,
ConcurrentLinked-
Deque, PriorityQueue,
ConcurrentLinkedQueue

7.50

Appsd Manotas et al. [92]

Bag C5 HashBag 16.93 Appsa Michanan et al. [94]
a A* Path Finder, Huffman Encoder, Genetic Algorithm
b https://github.com/greensoftwarelab/Collections-Energy-Benchmark
c Stock Exchange Trading Simulator
d Barbecue, Jdepend, Apache-xml-security, Joda-Time, Commons Lang, Commons CLI

2.4.5 Data Structures
A data structure is a way to organise, manage, and store data for further process or analysis.
This section consists of Empirical Studies and Tooling Support for data structures. In the Em-
pirical Studies part, we discuss works trying to identify which data structures are the most
energy-efficient for particular cases. For the Tooling Support, we show tools that inform a
practitioner which data structure to select to reduce energy consumption. Table 2.9 sum-
marises works on the data structures collection interface and library, energy consumption,
and tested applications for the relevant source.

2.4.5.1 Experimental Studies

By conducting experimental studies, Pereira et al. [124], Hasan et al. [63], and Pinto et al.
[136] identified some positive and negative cases concerning the energy consumption of
various data structures. The authors evaluated the energy consumption of data structures
from different interfaces, but mostly from the Java Collection Framework (JCF).

Pereira et al. performed an experimental study to evaluate the energy efficiency of dif-
ferent JCF interfaces methods such as search, iteration, removal, and insertion. By manually
replacing data structures in applications, the authors obtained significant energy savings as
illustrated in Table 2.9. Because the authors of the above work report an extensive list of
results, we compared the energy consumption of the most and least energy-efficient inter-
face,10 andwepresent in Table 2.9 the data structurewith themost energy-efficientmethods
for each interface.

10https://github.com/stefanos1316/Proof_for_Survey/blob/master/Pereira_Data_Structure.txt

https://github.com/greensoftwarelab/Collections -Energy-Benchmark
https://github.com/stefanos1316/Proof_for_Survey/blob/master/Pereira_Data_Structure.txt


24 / 130 2.4. IMPLEMENTATION

By examining the memory usage and analysing byte-code traces of Android applications,
Hasan et al. evaluated the energy consumption of different collection types. Apart from JCF,
the authors used data structures from Apache Commons Collections (ACC) and Trove.11 As
an outcome, the authors showed that energy consumption starts to diverge among the data
structures only when the number of elements they contain is above 500. Additionally, the
authors noted for the data structures with primitive data types (found in Trove collection)
that, while consuming less memory than objects, they are more energy-inefficient in most
of the cases.

Similarly, Pinto et al. used 13 thread-safe and three non-thread-safe implementations of
JCF. The authors tested the above data structures by utilising distinct configurations such as
the number of threads, initial capacity, and load factor. As a result, the authors observed that
the proper data structure selection and the number of threads (for most of the thread- and
non-thread-safe implementations) can decrease applications energy consumption. For ex-
ample, when the authors replaced theHashTable instances withConcurrentHashTableV8,
in real-world benchmarks, they achieved significant energy savings.

Overall, Pereira et al. showed that the same kind of method implementations (e.g., add,
remove, search) affect the energy consumption of data structures differently. In Table 2.9, we
can see that Pereira et al. achieved the highest energy savings in their experiments. However,
compared to Hasan et al. and Pinto et al., Pereira et al. used micro-benchmarks and not real-
world applications. Pinto et al. examined the energy impact of real-world applications by i)
replacing non-thread-safe with thread-safe data structures and ii) changing the number of
threads. This helped them to achieve substantial energy savings as illustrated in Table 2.9.
Furthermore, the results by Hasan et al. reveal the negative impact of unwise data structure
selection which can significantly affect energy consumption (see Table 2.9).

2.4.5.2 Tooling Support

Predicting the most energy-efficient data structures for a given problem can decrease en-
ergy consumption. To this end, Michanan et al. [94] introduced GreenC5, a tool that can
predict which data structures among the Copenhagen Comprehensive Collection Classes for
C# (C5) collection can reduce application energy consumption based on the system’s work-
load. GreenC5 is composed of a predictive algorithm based on machine learning and neural
network models. As shown in Table 2.9, Michanan et al. achieved energy savings for real-
world applications.

Manotas et al. [92] introduced SEEDS (also discussed in subsection 2.4.3.2), a decision
support framework that can dynamically evaluate Java collection types and modify them to
reduce the energy consumption of an application. To do that, SEEDS creates instances of
an application under development using different queue data structures, to find the most
energy-efficient ones. This helped Manotas et al. gain energy savings, in real-world applica-
tions, while choosing the proper queue type data structures.

For the tooling support, we observe several shortcomings such as a limited number of
collection types (SEEDS is available only for queue) or focus on specific collections (GreenC5
uses only the C5 collection). However, these tools can assist a developer in selecting and
experimenting with various data structures to obtain sufficient energy savings. Moreover,

11http://trove.starlight-systems.com/

http://trove.starlight-systems.com/
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Table 2.10: Code Practices Energy and Run-Time Impact

Coding Practice Implication (in %) Platform Source
Practice Practices Energy Run-Time

For loop with length 36–52 33–38 Android Tonini et al. [166]
For loop with length 10 avg. – Android Li and Halfond [84]
Efficient query usage 25.1 avg. 24.9 avg.
Put application to
sleep 8.48 avg. 6 avg. Linux Procaccianti et al. [138]

Good
Change macros to
function calls, loop
unrolling, reducing
lookUp tables sizesa

179 avg. – – Groszschadl et al. [57]

Avoid getters&setters 24–27 24–30 Android Tonini et al. [166]
Avoid getters&setters 30–35 – Android
Invoke staticmethods 15 avg. – Android Li and Halfond [84]

Avoid using relational
databases

Bad

Avoid unnecessary
views and widgets

– – Android
Linares-Vásquez et al.
[89]

a Comparing RC6 against Twofish, also run-time performancewas calculated in clock cycles instead
of time, therefore, we did not adding it in our results

further support on various data structure types and different collections canmake such tools
more beneficial and attractive to the developers.

2.4.6 Coding Practices

Best coding practices are sets of rules, formally or informally, established by various coding
communities that help software practitioners to improve software quality. In this section,
we discuss works on empirical evaluation that examine the energy consumption of coding
practices. Table 2.10 summarises results identified from the related works as “Good” and
“Bad” coding practices. By the terms “Good” and “Bad”, we refer to coding practices that
may impact a program’s readability, maintainability, efficiency, and usability positively or
negatively, respectively.

In terms of embedded systems, Groszschadl et al. [57] evaluated the run-time perfor-
mance, energy consumption, memory usage, and code size of five block ciphers (i.e., RC6,
Rijndael, Serpent, Twofish, and XTEA) on a StrongARM SA-1100 processor. The authors mod-
ified the existing source code of the cipher algorithms (to reduce their lines of code) by:

• Replacingmacros with function calls.

• Using loop unrolling in the encryption and decryption functions.

• Replacing T-lookup with forward and inverse S-box tables and reducing their sizes.
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Their results show that the block ciphers XTEA and RC6 (which had the smallest code
size) were the most energy-efficient, offered the best run-time performance, and utilised
less main memory for the encryption and decryption tasks.

In their experiment, Tonini et al. investigated the energy efficiency of best practices for
Android development. Their results indicate that the proper use of for loop and getter-
s/setters can improve energy consumption. Initially, the authors performed experiments by
using different variations of for loop, i.e., for-each, when the loop’s termination condition
is (1) calculated at each iteration, and (2) when it is passed as a variable. In addition, the
author evaluated scenarios with and without getters/setters to access the class fields. Their
results show significant energy savings by using a variable as the loop termination condition
and accessing class variables without using getter/setter functions (see Table 2.10).

Likewise, Li and Halfond checked practices such as HTTP request bundling with specific
size and memory usage, and performance tips. Particularly, to increase the performance,
the authors inspected coding practices, obtained from the Android developer forum.12 The
application of coding practices helped Li and Halfond to obtain notable energy savings as
illustrated in Table 2.10. The practice of avoiding calculating a data structure’s length in a loop
proved beneficial since, having the loop’s termination condition in a variable saves energy by
bypassing the calculation of the length at each iteration. The practice of direct field access
also proved beneficial because no additional function call is required from the system, unlike
the case where a field value is retrieved through method invocation. Finally, the practice of
static invocation proved energy-efficient because calling a method statically saves energy as
it avoids the lookup overhead for calling methods through an existing object.

Android offers a variety of Application Programming Interface (API) calls and if not used
efficiently these can contribute in increased energy consumption [89]. In their study, Linares-
Vásquez et al. performed an analysis on 55 Android applications from various domains and
they listed the most energy-inefficient API methods. Moreover, the authors suggested a list
of practices that can yield energy savings by effectively using API calls. To obtain their results,
the authors correlated timestamps of amethod’s execution traces with energy consumption
measurements. After analysing their results, they identified 133 energy-greedy APIs out of
the total of 807. From the energy-greedy APIs, 61% are related to graphical user interface
and image manipulation, while the remaining 39% fall under the category of database. In
conclusion, the authors highlighted that the unnecessary refreshing of views (e.g., redrawing
a view upon receiving new data) and widgets can consume a significant amount of energy.
In addition, they highly recommend users to avoid relational database management systems
when it is not of paramount importance.

Two best practices were recommended and evaluated by Procaccianti et al. [138]. The
selected practices were put the application to sleep, i.e., put processes or threads on sleep
state if they are waiting for I/O operations or they are no longer active, and use efficient
queries i.e., avoid the use of expensive energy operations such as ordering or indexing when
not needed. As an outcome, the authors achieved energy efficiency by using both practices
and, also, increased run-time performance (see Table 2.10).

To sum up, there are opportunities for energy consumption and run-time performance
improvements even by applying minor code changes such as passing a variable in a loop’s
termination condition or by invoking a method statically [166, 84]. Moreover, the proper
API selection that demands fewer system resources can also reduce energy consumption,

12https://developer.android.com/training/articles/perf-tips.html

https://developer.android.com/training/articles/perf-tips.html
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according to Linares-Vásquez et al. Additionally, Procaccianti et al. improved energy con-
sumption and run-time performance by reducing the use of expensive database operations
(when these were not mandatory) and putting applications to sleep (when they were not
performing any action).

Table 2.11: Remote IPC Energy and Run-Time Impact

Remote IPC Applications PlatformsResults Source

SOAP and
REST

Various mes-
sage sizes Android REST more energy-

efficient Mizouni et al. 2011

REST and
WebSockets

Various mes-
sage sizes Android REST more energy-

efficient
Boven and Hennebert
2012

REST Axis2 and CXF RPis Axis more energy-
efficient

Nunes et al. 2014

REST and
WebSockets

Various mes-
sage sizes Android

WebSockets are more
energy-efficient Herwig et al. 2015

REST, SOAP,
WebSockets,
gRPC

Bubble, Inser-
tion, and Heap
sorting

Android
REST and SOAP are
energy-efficient Chamas et al. 2017

2.4.7 IPC Technologies
Most modern information technology devices use the Internet for creating, reading, updat-
ing, and deleting shared data through remote IPC. In this section, we discuss work on IPC
technologies and we illustrate them in the form of a table (see Table 2.11).

Herwig et al. [66], Chamas et al. [32], Boven and Hennebert [24], and Mizouni et al. [98]
performed experimental studies to identify the energy consumption of popular IPC technolo-
gies. More specifically, Chamas et al. aimed to identify which are the most energy-efficient
IPC technologies to offload compute-intensive tasks to a server. The authors performed their
experiments locally (on an Android phone) and remotely (server offloading) to examine REST,
SOAP, WebSocket, and gRPC IPC technologies. Their results suggest that (1) the size of data
indeed affects energy consumption, (2) local execution can save more energy than remote
for small input sizes, and (3) REST and SOAP are themost energy-efficient architecture styles.

Mizouni et al. investigated the energy consumption and run-time performance of SOAP
and RESTful web services. They showed that a RESTful web service not only has 10% lower
energy consumption against SOAP but has also 30% better run-time performance. Bovet
and Hennebert compared the energy consumption of RESTful andWebSocket web service in
the context of smartphones and also showed that RESTful web services are far more energy-
efficient [24]. Similarly, Herwig et al. investigated the energy consumption of REST andWeb-
Sockets by sending and receiving data packets on three different network types i.e., WLAN,
3G, and Edge network. They showed that REST consumes more energy viz-a-viz the Web-
Sockets; however, this contradicts Chamas et al., Mizouni et al., and Bovet and Hennebert
who proved REST as the most energy-efficient IPC.

To evaluate the run-time performance and energy consumption of RESTful web services
built on two well-known frameworks (i.e., Axis2 and CXF), Nunes et al. performed an experi-
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mental study in the context of a Raspberry Pi platform [109]. In their experiment, they com-
pared the marshaling and unmarshaling of different message sizes and also different CPU
clock frequencies. Their results illustrate that the Axis2 framework can offer efficiency in en-
ergy consumption and better run-time performance. Also, they found that CPU overclocking
contributes to reduced energy consumption and faster execution time.

According to the above literature, we point out that all of the studies related to the en-
ergy consumption of IPC technologies focus on embedded systems or mobiles devices, while
workstations are out of the context. Likewise, the focus is mostly on Java frameworks that
utilise IPC technologies.

2.5 Verification
In this section, we discuss a range of tools to measure and test the software’s energy and
power consumption after the development of an application. We divide the collected works
into Benchmarks andMonitoring Tools in Sections 2.5.1 and 2.5.2, respectively.

Table 2.12: Benchmark-Related Work Information

Tool
Name

Target
Platform

Energy Correl-
cation With

Optimisation Level Source

GBench Linux
Hardware
Components

Data memory move-
ment, block size,
number of cores

Subramaniam and Feng
[159]

ALEA Linux Code blocks

Compiler optimisa-
tion, power capping,
DVFS, thread throt-
tling

Mukhanov et al. [102]

AxBench Linux
Hardware
components

Source code via ap-
proximation

Yazdanbakhsh et al.
[174]

Power
Bench

TinyOS Each node of
the test-bed

– Haratcherev et al. [62]

2.5.1 Benchmarks
Benchmarks are tools consisting of two main components: (1) a profiling tool, responsible
for obtaining instructions used from a specific execution and (2) a performance benchmark,
that generates workloads for a system. The above components combined, perform energy
consumptionmeasurements. Table 2.12 summarises collected information in terms of target
platform, energymeasurement correlations with hardware or software components, optimi-
sations applied, and the related resources.

PowerBench is a scalable test-bed infrastructure that benchmarks and retrieves power
consumption traces, in parallel, from various wireless sensor nodes of a cluster [62]. To do
that, PowerBench utilises particular hardware and software components to offer an off-line
processing, analysis, debugging, and visualisation of the elicited power measurements. The
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features of such an approach can aid developers to detect power consumption fluctuations
and anomalies in clusters and complex IoT environments.

Subramaniam and Feng [159] proposed Green Benchmark (GBench), an approach that
employs the Load Varying-LINPACK13 that produces a variety of workloads to evaluate the
energy consumption of a system. The authors tested GBench with different configurations
such as block size, work-loads, number of cores, and memory access rate. As an outcome,
they detected a correlation between the energy consumption and run-time performance for
the second level (L2) of cache misses, on specific workloads.

Mukhanov et al. [102] suggested Abstract-Level Energy Accounting (ALEA), a highly ac-
curate (mean error of 1.4%) portable tool that retrieves energy measurements from any
micro-processor architecture. At its core, ALEA has a fine-grained energy profiling tool that
retrieves measurements from basic code blocks. For evaluation, the authors employed well-
known benchmark suites such as SPEC 2000,14 SPEC,15 OMP,16 etc., and analysed the rela-
tion between basic code blocks’ energy consumption and cache accesses to identify energy
hot-spots. As a result, by using ALEA, the authors achieved 37% of energy savings, on some
of the mentioned benchmarks, through different kinds of energy-efficient strategies and ad-
justments, e.g., concurrency throttling, thread packing.17 Moreover, they revealed a strong
correlation between energy consumption and cache access rate.

AxBench, proposed by Yazdanbakhsh et al. [174], is a benchmark suite that supports tests
in diverse domains such as finance, signal processing, image processing, machine learning,
and so on, aiming to evaluate a system’s run-time and energy performance by exploiting ap-
proximation techniques. Specifically, the approximation techniques supported by AxBench
consist of loop perforation and neural processing units. AxBench obtains energy measure-
ments of the CPU, GPU, and Axilog hardware [173]. AxBench offers (1) the feature to test
various levels of the computing stack (software and hardware), (2) various test inputs, and
(3) application-specific quality metrics, i.e., average relative error for numeric output, miss
rate for boolean result, and image difference. However, to perform benchmarking, a user
has to identify and manually annotate regions of code that can tolerate imprecision.

The major difference between GBench and ALEA is that the latter correlates energy mea-
surements with basic code blocks, while the former maps the energy consumption of the
entire application to hardware components. AxBench is equipped with benchmarks for CPU
and GPU aiming to offer a fine-grained understanding of their energy and run-time perfor-
mance implications. In contrast to the above benchmarks, PowerBench is the only one to
evaluate the energy consumption of an IoT-like infrastructure and cluster.

2.5.2 Monitoring Tools

To derive the energy consumption of a computer system, two approaches currently exist: (1)
indirect energy measurements through estimation models or performance counters and (2)
direct measurements, through hardware energy analysers and sensors. In this section, we
discuss tools that are using indirect and direct approaches to performmeasurements. Some

13https://www.top500.org/project/linpack/
14http://www.spec2000.com/
15https://www.spec.org/
16https://www.spec.org/omp2012/
17collecting threads under a specific number of cores

https://www.top500.org/project/linpack/
http://www.spec2000.com/
https://www.spec.org/
https://www.spec.org/omp2012/
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of the tools we present, analyse running applications or system calls to estimate energy con-
sumption. However, compared to the source code analysis tools presented in Section 2.4.3,
the energy monitoring tools only report the energy consumption of an application without
pointing out energy hot-spots or providing hints for improving the spotted deficiencies. Ta-
bles 2.13 and 2.14 present the discussed software and hardware energy monitoring tools.
The tables depict a variety of information such as tool names, target platform, measurement
types, sampling intervals, and median error rates.

2.5.2.1 Software Energy Monitoring Tools

Weuse the term “software energymonitoring tools” for software-based analysers that utilise
performance counters or estimation models to measure the energy consumption of running
applications. We analyse the monitoring tools concerning their features, limitations, archi-
tecture (energy estimationmodel), and supportedOS.Moreover, we further classify the soft-
ware energymonitoring tools according to the platform they target into three categories: (1)
workstations and servers, (2) VMs, and (3) smartphones.

Workstations and Servers Running Average Power Limit (RAPL) monitors and controls en-
ergy consumption via performance counters [114]. By utilising the Linux kernel pseudo file
system (sysfs), RAPL sysfs exposes kernel subsystems, hardware devices, and device driver
information from the kernel to userspace allowing the estimation of the software’s energy
consumption. Liu et al. [91] introduced jRAPL,18 a framework that combines RAPL and the
Java Native Interface to measure the energy consumption of CPU, RAM, and Package19 com-
ponents for a Java application. Apart from jRAPL, Pantels et al. [118] and Pantels [117] intro-
duced the tools PowerGadget and SoCWatch, respectively. Both tools are using RAPL to elicit
power consumption from the CPU’s performance counters. PowerGadget retrieves package
power metrics exposed by the CPU and GPU, and can be integrated within a user’s appli-
cation through a C++ API. SoCWatch provides power-related information for the CPU’s and
GPU’s C- and P-state residencies. All the discussed RAPL-based tools have a high sampling
rate and can retrieve a substantial number of samples permillisecond as shown in Table 2.13.
However, tools incorporating RAPL work under specific hardware limitations such as partic-
ular microprocessor architecture [114]. For instance, PowerGadget is compatible only with
Intel’s second generation CPUs, and it is not yet supported for architectures such as Skylake,
Broadwell, and Haswell.

To estimate application energy consumption, Noureddine et al. [106], Bourdon et al. [23],
and Noureddine and Rajan [105], proposed a number of tools. Specifically, Noureddine et al.
[106] proposed Jalen,20 a Java agent, which, when attached to an application, it gathers en-
ergy measurements after the initialization of the JVM. Jalenmeasures selectedmethods and
classes. Additionally, it provides measurements on explicit hardware components (e.g., CPU
and HDD) and estimates the energy consumption of software by analysing executed Java in-
structions. Jolinar21 is a Java-based tool for monitoring energy consumption at the process

18https://github.com/kliu20/jRAPL
19the core (all CPU cores) and the un-core (GPU, LLC, etc.)
20https://github.com/adelnoureddine/jalen
21https://github.com/adelnoureddine/jolinar

https://github.com/kliu20/jRAPL
https://github.com/adelnoureddine/jalen
https://github.com/adelnoureddine/jolinar
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Table 2.13: Software-based Monitoring Tools Related-Work Information

Name Target
Platform

Measurement
Type

Sampling
Rate (msec)

Median
Error

Source

Jalen Linux Energy 500 – Noureddine et al. [106]
PowerAPI Linux Energy 500 0.5–3 Bourdon et al. [23]
jRAPL Linux Energy 1 1.13 Liu et al. [91]

Jolinar Linux Energy 500 3
Noureddine and Rajan
[105]

RAPL Linux Energy 1 3 David et al. [42]

SoCWatch
Windows,
Linux, &
Android

Power 1–1000 – Pantels [117]

Power
Gadget

Windows
& Linux Power 1–1000 – Pantels et al. [118]

JouleMeter
VMs &
Windows Power 1000 5 Liu et al. [90]

VMeter VMs Power – 6 Bohra and Chaudhary [21]
BitWatts VMs Energy 500 2 Colmant et al. [36]
Power
Booter

Android Power – 0.8 Zhang et al. [176]

Green
Oracle Android Energy – 10

Chowdhury and Hindle
[35]

AEP Android Power – – Chen and Zong [33]
PETrA Android Energy 1000 0.04 Di Nucci et al. [45]

level. According to its developers, Noureddine and Rajan [105], the tool measures the en-
ergy consumption of specific hardware components such as CPU, RAM, and HDD. However,
both Jalen and Jolinar use an old Intel’s energy module that is not supported by the Linux
kernel versions 3.10 and above unless Intel p_state is disabled.22

A coarse-grained tool for monitoring process-level energy consumption is PowerAPI.23
PowerAPI is a Scala-based middleware that implements an API for monitoring applications
at real-time [23]. It estimates the energy consumption of various hardware components
(CPU, RAM, HDD, etc.). Noureddine et al. [107] evaluated its accuracy against the powerspy2
power analyser and showed a low median error rate (i.e., 0.5–3% ). A weakness of Power-
API is that it expects from a user to give the duration of time that the corresponding tool
will collect energy measurements. Likely worst-case scenarios here are (1) over-collection of
measurements (when an application elapses and the tool still measures the idle time) and
(2) the incomplete collection of measurements (when an application is still running but the
tool’s given duration time is too short).

A noteworthy fact is that both Jalen and Jolinar have PowerAPI as their core component
for extracting energy measurements. However, PowerAPI exposes energy measurements of
an application at the system process-level, whereas Jalen and Jolinar correlate the collected

22https://github.com/stefanos1316/Proof_for_Survey/blob/master/Emails%20from%
20Nourredine%20Adel.txt

23https://github.com/Spirals-Team/powerapi
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energy-related information with Java applications. Compared to the tools proposed by Pan-
druvada [114], Liu et al. [91], Pantels et al. [118], and Pantels [117], the tools above are
estimating energy and power consumption through instrumentation profiling, while RAPL
utilises performance counters. Moreover, as shown in this section most of the tools lack
interoperability which can be a hardware or software limitation.

Virtual Machines Joulemeter, a tool introduced by Liu et al. [90], fetches energy measure-
ments from an applications running in a VM (running in a Windows system) by tracking re-
source usage from various hardware components such as CPU, RAM, HDD, and screen. Its
model estimates energy consumption by utilising the VM’s resource tracing, which in turn
obtains information through the performance counters. Joulemeter is not limited to energy
consumption measurements; additionally, it offers the feature of per-VM power capping,
sleep, and remote wake-up control management procedures that significantly lessen the en-
ergy consumption of a server. However, Joulemeter is not supported by an OS newer than
Windows 7.24

Bohra and Chaudhary [21] presented VMeter, a VM power modeling method for esti-
mating energy consumption of various components such as CPU, cache, DRAM, and HDD.
The tool monitors regularly the system’s resource usage and calculates energy consumption
by employing a power model, which has minimal overhead on the system’s total energy con-
sumption (i.e., 0.012%). To extract resource usage information from a VM, VMeter utilises
the performance counters and a disk monitoring tool.

BitWatts25 is a middleware solution that calculates the energy consumption of an appli-
cation inside a VM via an energy estimation model [36]. It is an extension of the PowerAPI
toolkit [23] and is designed to collect energy measurements from modern and complex mi-
croprocessors that support multi-cores, hyper-threading, Dynamic Voltage Frequency Scal-
ing, and dynamic overclocking. A strong feature of BitWatts is the collection and aggregation
of energy measurements from multiple processes that are located in a distributed environ-
ment.

BitWatts energy model was compared viz-a-viz PowerSpy,26 a Bluetooth energy meter
and RAPL. As an outcome, BitWatts delivers power estimation with a median error of 2%
against the PowerSpy, which is the lowest against VMeter and Joulemeter. Also, compared
to VMeter and Joulemeter, BitWatts can be used to analyse the energy consumption of more
complex environments such as IoT infrastructure and data centers.

SmartPhones Measuring the energy consumption of mobile devices is done in various
ways. Zhang et al. [176] introduced PowerBooter, an on-line energy estimationmodel, which
calculates energy consumption by combining measurements from battery’s voltage sensors
and discharge rate. Thus, PowerBooter estimates energy consumption without utilising ex-
ternal hardware power meter. By combining PowerBooter and PowerTutor,27 the authors
obtained energy measurements based on the activity of various hardware components such
as CPU, LCD/OLED, GPS, Wi-Fi, and cellular network components.

24https://social.microsoft.com/Forums/en-US/home?forum=joulemeter
25https://github.com/mcolmant/powerapi/tree/BitWatts
26http://www.alciom.com/en/products/ powerspy2-en-gb-2.html
27https://github.com/msg555/PowerTutor
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Similarly, Chen and Zong [33] developed the Android Energy Profiler (AEP), a tool that
correlates process resource usage activities with voltage and current information. The volt-
age and current information is generated through a smartphone’s built-in voltage sensor and
is used by AEP to estimate energy consumption. AEP is not limited to energy consumption
measurements; it can also provide run-time performance results. However, in contrast to
PowerTutor, AEP provides energy measurements only for the CPU and main memory. A pit-
fall of AEP is a run-time performance degradation of around 25%, which is incurred from the
data collection process.

Another tool to obtain energy measurements from smartphones is GreenOracle [35].
GreenOralce is an energy estimation model which, after being trained with a variety of An-
droid applications, it can obtain energy measurements for anymobile application. The intro-
duced model, once trained, is usable by application developers to retrieve energy measure-
ments without the need of an external instrumentation tool. To estimate energy consump-
tion, GreenOracle uses dynamic tracing on system calls (i.e. strace) and CPU utilisation.

Profiling Energy Tool for Android (PETrA), is a software-based energy profiling tool [45]. A
feature of the tool is the fine-grained energymeasurements that are obtained at themethod
level. Additionally, compared to prior work, PETrA does not require calibration. PETrA’s pre-
cision was validated on 54 Android applications and compared against a hardware-based
energy consumption toolkit, the Monsoon. The outcome shows that PETrA’s energy mea-
surements deviate little from these of Monsoon (see Table 2.13).

In contrast to all the preceding tools, PowerBooter offers energy measurements for a
large number of smartphone components. However, in contrast to PowerBooter and PETrA,
GreenOralce suffers from high median error rate (see Table 2.13). Compared to the above,
GreenOracle has a sophisticated energy estimation model that, once trained, offers energy
measurements for various Android applications.

Table 2.14: Hardware-based Monitoring Tools Related-Work Information

Test-bed’s
Name

Target
Platform

Measurement
Type

Sampling
Rate (in sec.)

Median
Error Rate

Source

AtomLEAP Linux Energy 1 – Peterson et al. [128]
SEFLab Windows Power, Energy 1 1% Ferreira et al. [51]
GreenMiner Android Power 1 insignificant Hindle et al. [67]

2.5.2.2 Hardware Energy Monitoring Tools

Hardware energy analysers or sensors can also retrieve energy consumption measurements
from a computer system. However, the disaggregation of the coarse-grained energy mea-
surements into software or hardware components is a demanding task. The hardware energy
monitoring tools are typically no-stand-alone tools that require additional hardware compo-
nents such as an external device to obtain power or energy measurements. In this section,
we describe some hardware energy monitoring tools for workstations, servers, and smart-
phones.
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Workstation and Server Monitoring Tools Software Energy Footprint Lab (SEFLab) aims to
capture the energy consumption measurements of a computer system and map them to its
hardware components (i.e., CPU, RAM, HDD) [51]. Atom Low-Energy Aware Platform (LEAP)
is a test-bed that is capable of measuring the energy consumption of small code segments in
the kernel and userspace [128]. Both tools make use of the Data AcQuisition device (DAQ),
an external energy profiling tool that obtains coarse-grainedmeasurements froma computer
system. After obtaining the energy consumption of an application, both tools are trying to
correlate the retrieve measurements with time-stamps and system resource usage. More-
over, SEFLab uses Joulemeter [90] to compare its accuracy against the DAQ energy profiler.
The major distinction between the two approaches is that Atom LEAP tries to map the col-
lected energy consumption of an application with software components, while SEFLab maps
them with various hardware components. However, to utilise one of the above approaches,
a number of tools and set up is required.

SmartphoneMonitoring Tools GreenMiner is an experimental platform introduced by Hin-
dle et al. [67], which retrieves the energy consumption of a smartphone through scheduled
tests. All the tests are scheduled by a web service, while a Raspberry Pi28 is responsible for
launching test scripts on a smartphone by using the Android Debug Bridge interface. Once
the tests are launched, an INA21929 chip is used to record the smartphone’s current and volt-
age measurements. Afterwards, an Arduino30 device is responsible for fetching, calculating,
and storing all power measurements from the INA219 chip. Subsequently, the Raspberry Pi
collects the energy consumptionmeasurements andmeta-data from the Arduino device and
forwards them to a server where a web service aggregates, analyses, and stores the experi-
ment’s data. Additionally, GreenMiner acts as a continuous integration tool for running tests
and comparing the energy consumption of different repositories. Through data aggregation
and analysis, it provides insights that can guide developers in determining energy consump-
tion change through the evolution of source code at particular product versions. Similarly
to the workstation and server monitoring tools presented in the previous paragraph, Green-
Miner also requires a number of tools and a set up to estimate an application’s energy con-
sumption.

2.6 Maintenance

Maintenance is the process of enhancing or fixing errors in software after its deployment. For
the maintenance phase, we discuss techniques and tools for refactoring source code aiming
to demonstrate energy savings. In the context of SDLC for energy efficiency, refactoring is the
practice that aims to optimise the energy consumption of applications through code-level
modifications without altering the underlying code structure. Along the same lines, this is
also used for source code analysis during software development to detect energy hot-spots
or bugs (as discussed in Section 2.4.3). In this section, we present refactoring techniques
applied after the deployment phase (i.e., during the maintenance phase).

28https://www.raspberrypi.org/
29http://www.ti.com/product/INA219
30https://www.arduino.cc/

https://www.raspberrypi.org/
http://www.ti.com/product/INA219
https://www.arduino.cc/
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Table 2.15: Refactoring Energy and Run-Time Impact

Refactoring Techniques Implications Cases Source
Energy Run-Time

Dead Local Variable, Non
Short Circuit,a Parameter
By Value, Repeated Con-
ditionals, Self Assignment
Variable

< 1
avg.

Energy Code
Smells are not af-
fecting execution
time

Authors’
Apps e Morisio et al. [100]

Convert Local Variable
to Field,b Extract Local
Variable,cExtract Method,
Introduce Indirection,d In
line Method,g Introduce
Parameter Objecth

−7.5 to
4.54

There is no cor-
relation between
execution time
and energy con-
sumption for JVM
6 and 7

Selected
Apps f Sahin et al. [153]

Replace Method with
Method Object and
Encapsulate Collection

−7.91 to
6.99

–
M.Fowler’s
Code
Samples i

Park et al. [120]

Loop Unrolling, Loop
Unswitching, Method
Inline

6.4 to
50.21

Observed runtime
performance
boost

Cocos2d
game
engine

Li and Gallagher
[85]

a Using “&&” and “|| ||” cause both sides of the expression to be evaluated, in contrast to “&” and “||”
b Refactoring local variables to public class fields
c Occurrences of the same expression can be replaced from a variable
d Redirecting all the method invocations to a newly created static method
e Use of micro-benchmarks
f Commons-{Beanutils, CLI, Collections, IO, Lang, Math}, Joda-Convert, Joda-Time, Sudoku
g In place of the method’s invocation its source code is added instead
h Created a new class at the top level (super class)
i Code Samples by Fowler et al. [52]

2.6.1 Empirical Evaluation of Code Refactoring

In this section, we consider empirical evaluations of refactoring techniques and patterns for
energy-performance optimisations that software practitioners may employ to reduce appli-
cation energy consumption. Table 2.15 depicts some of the authors’ collected results31 con-
cerning the relevant refactoring method’s energy and run-time performance implications,
and their test cases.

Fowler et al. [52] introduced the concept of code refactoring to improve understandabil-
ity, maintainability, and extensibility of existing source code. To this end, Sahin et al. [153]
and Park et al. [120] used the described patterns to perform empirical studies that exam-
ine how certain code refactoring patterns affect an application’s energy consumption. Both
authors used distinct embedded systems, parameters, and a number of smells for their em-
pirical studies. Specifically, Sahin et al. evaluated six widely known refactoring techniques
on two Java Virtual Machine (JVM) versions (i.e., 6 and 7) over nine applications. Park et al.

31concerning consistency for the research of Park et al. [120], we added only the results of the highest and
lowest energy consumption since they investigated over 63 refactoring patterns.
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evaluated 63 out of the 68 refactoring techniques over code samples proposed by Fowler
et al. Sahin et al. concluded that every refactoring method may increase or decrease the
application’s energy usage, apart from Extend Local Variables which always reduces energy
consumption. Similarly, Park et al. found that some of the refactoring code smells may al-
ter positively or negatively the energy consumption of applications. Particularly, from the
obtained results Park et al. illustrated that 33 of the refactoring techniques lead to energy
savingswhile the remaining 30 do not. Besides, the authors shared that the energy consump-
tion between Java versions, in the context of the refactoring techniques, is not consistent.

Energy Code Smells is a term stated by Morisio et al. [100] relating to inefficient im-
plementation choices that increase energy consumption. Through their experiential study,
Morisio et al. aimed to determine a number of code smells [52] that can alter the energy,
run-time performance, or even both. Hence, they performed their experiment on existing
code smells found by CppCheck32 and FindBugs33 tools. Tominimise the software noise from
threads which may run in parallel and subsequently affect energy measurements, the au-
thors performed their experiment on an embedded system (Waspmote V1.1).34 By testing
nine different refactoring patterns, Morisio et al. inferred that only five of those reduce the
energy consumption by less than 1%, on average, (see Table 2.15) while the remaining in-
crease the energy consumption or leave it intact. Nevertheless, the authors claim that no
correlation exists between Energy Code Smells and Performance Smells apart from a single
case (i.e., Mutual Exclusion OR).

The results depicted in Table 2.15 show that Morisio et al., Sahin et al., and Park et al.
elicited both gains (the positive values) and losses (the negative values) in energy consump-
tion such as 1%, −7% to 5%, and−8% to 7%, respectively. We can observe that the results
of Sahin et al. and Park et al., used quite similar refactoring patterns, do not differ much even
though they used different languages to produce their test cases (i.e., Java and C++, respec-
tively). Morisio et al. also employed the refactoring patterns introduced by Fowler et al. [52];
however, they demonstrated only minor energy savings (less than 1%). Moreover, Morisio
et al. showed that the Energy Code Smells are not affecting Performance Smells or vice versa.

The above results suggest that the energy savings are feasible by code refactoring tech-
niques. However, not all refactoring techniques can offer energy savings. Also, the impact of
refactoring techniques on the energy and run-time performance may vary among program-
ming languages.

2.6.2 Tools for Refactoring

In this section, we discuss work that offer tools aiming to refactor the source code of an
application in order to reduce its energy consumption and run-time performance.

An energy optimisation framework for Android applications has been introduced by Li
and Gallagher [85]; it focuses on lending energy optimisations through a set of refactoring
strategies on the deployed source code. The proposed framework takes source code as an
input and analyses it to retrieve energy-related data to correlate themwith basic code blocks.
Afterwards, the framework spots energy hot-spots of the source code and applies, either
autonomously or through manual involvement, refactoring strategies (e.g., Loop Unrolling,

32https://sourceforge.net/p/cppcheck/wiki/Home/
33http://findbugs.sourceforge.net/
34http://www.libelium.com/development-v11/
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Loop Unswitching, Method In-line). Employing such a refactoring tool can help a user to
modify existing or legacy systems source code, so as to reduce their energy consumption and
increase run-time performance. The authors evaluated their tool on real-world applications
and obtained energy savings ranging from 6% to 50%.

2.7 Research Opportunities

Overall, our analysis reveals that techniques and tools for achieving energy efficiency exist
for each phase of the SDLC. However, for software practitioners to adopt and use existing
tools and techniques, interoperability, usability, and adequate support are crucial factors.
To this end, we point out a number of possible research challenges that we identified from
our study. In the following paragraphs, we analyse each of these research challenges and
we provide future research directions.

RC1. Limited investigation on diverse programming languages.

The same application developed in distinct programming languages varies concerning
energy usage and run-time performance (see section 2.4). Programming languages such
as C and C++ might be challenging when it comes to memory management safety and
reliability; nevertheless, they do pay back the developers with lower energy consumption
and, at the same time, better run-time performance.

Researchers have investigated only a small portion of the available program-
ming languages, while a large pool of them exists. With the advent of cloud
computing, mobile applications, and hyper-physical systems, it is important
to appraise the energy consumption and run-time performance of different
programming languages for different programming tasks.

RC2. Limited investigation on diverse remote IPC technologies.

Web applications are developed with different mechanisms to interact with data on the
WorldWideWeb as shown in Section 2.4. However, prior works focused on investigating the
energy consumption and run-time performance of smart phones and embedded systems
on Java implementations for remote IPC such as RPC, REST, SOAP, and WebSockets.

IPC technologies have not been investigated in terms of energy consumption
and run-time performance for different programming language implementa-
tions. Moreover, gRPC, an IPC mechanisms used by many applications, is out
of scope.

RC3. Identifying security impact of various applications.

Security mechanisms are essential parts of modern OSs and applications. Prior studies
have mostly investigated security mechanisms run-time performance. However, security
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mechanisms can effect significantly the energy consumption of various applications too.

Performing a study to evaluate the energy and run-time performance of var-
ious security mechanisms such as CPU-vulnerability patches (e.g., Spectre,
Meltdown), compiler-related safeguards (e.g., Stack Smashing Attacks, Po-
sition Independent Executable), and so on can help researchers to identify
which are themost energy consuming ones. Such findings can be used to turn
off performance declining securitymechanismswhen applications are running
in secure environments to gain energy and speed.



Chapter 3

Methodology

The development of energy-efficient software is a wide topic as shown in Chapter 2. There-
fore, to offer a fine-grained investigation and analysis, we break down our work into three
different, smaller studies. First, we discuss the various programming language implications
in terms of energy and run-time performance while executing tasks on different computer
platforms (server, laptop, and embedded system). Afterwards, we proceed with a discussion
on various remote IPC technologies energy and run-time performance implications, imple-
mented in different programming languages and executing tasks on a client/server architec-
ture. Finally, we discuss our research on investigating possible performance savings while
shutting down security mechanisms in modern OSs. In the following sections, we discuss
in detail the (1) research objectives, (2) software systems and tools, (3) research methods,
and (4) limitations of our studies. Specifically, our research consists of three main parts as
discussed below.

3.1 Research Objectives

In this section, we set the research objectives that we aim to answer in this thesis. Moreover,
we discuss why it is important to answer these research questions. We use several prefixes
to discuss the research questions presented in this thesis. In particular, we use the PL-RQ to
discuss the programming languages research questions, the IPC-RQ to refer to the remote
IPC technologies study, and the SG-RQ to discuss on security mechanisms work.

3.1.1 Programming Languages Research Questions

For the first study, we concentrate on how the programming languages impact various com-
puter tasks. Specifically, wemeasure the Energy Delay Product (EPD), a weighted function of
the energy consumption and run-time performance product, for a sample of commonly used
programming tasks. We do this to identify which programming language implementations
(i.e., programming tasks developed in particular programming languages) are more efficient.
The usage of a metric like EDP can help us to make suggestions regarding the programming
languages that should be used for the development of particular programming tasks, which
are dependent on the energy or performance requirements of the software systems and
applications the tasks belong to.

39
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Previous studies claim that compiled programming languages such as C and C++ are the
most energy and performance-efficient, while semi-compiled and interpreted languages
are the least efficient [4, 143, 33]. We attempt to investigate whether the above statement
is true by conducting a large scale empirical study on a sample of 25 programming tasks
implemented in 14 programming languages. In addition to that, our focus is to introduce an
automatic approach that software practitioners can use to calculate the EDP of a selected
programming language for a certain task type, e.g., I/O- or CPU-intensive applications,
running on specific computer systems. We define our research questions as follows:

PL-RQ1. Which programming languages are the most EDP-efficient and inef-
ficient for particular tasks?—Our objective is to rank the selected program-
ming languages based on the EDP of the implemented programming tasks.
By answering this research question, we will guide practitioners on which pro-
gramming languages they should avoid or consider when developing software
applications that require to be EDP-efficient for particular tasks.

PL-RQ2. Which types of programming languages are, on average, more EDP-
efficient and inefficient for each of the platforms?—Our goal is to evaluate
the efficiency of different programming language families (i.e., compiled, in-
terpreted, and semi-compiled) based on the average EDP of their implemen-
tations, when the latter are running on particular software platforms (i.e.,
server, laptop, and embedded system). By answering this research question,
wewill determine which types of programming languages can on average pro-
duce better EDP results when running on specific platforms.

PL-RQ3. Howmuch does the EDP of each programming language differ among
the selected platforms?—For answering this research question, we examine
whether the average EDP of the selected tasks, which are implemented in a
particular programming language, differs when these tasks run on different
software platforms (i.e., server, laptop, and embedded system). By answer-
ing this research question, we will define whether distinct compute platforms
affect the EDP of tasks, developed in programming languages, in a different
way.

3.1.2 IPC Research Questions
Works carried out in the context of the energy consumption for IPC technologies are limited
to Java implementations executed on smart phones [32, 66] or embedded systems [109].
These have shown that Rest implementations offer the best results for these particular
devices. However, IPC technologies are often being used heavily in other IT-related contexts
such as data-centers and IoT. To this end, we investigate whether the same pattern exists
for computer systems equipped with Intel and ARM processors by taking into account
seven different programming languages and the platforms’ system calls and resource usage.
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Hereby, we define our research questions as follows:

IPC-RQ1. Which IPC technology implementation offers the most energy and
run-time performance-efficient results?—Our objective here is to identify the
implications that each IPC technology has on the energy consumption and
run-time performance for the selected programming languages. This can help
practitioners select among the IPC implementations those that offer the most
energy- and run-time performance-efficient solutions.

IPC-RQ2. What are the reasons that make certain IPC technologies more en-
ergy and run-time performance-efficient?—Here, we investigate under the
hood how each of the selected IPC technologies works, by examining the im-
plementations’ system calls. This can show us which are the system calls that
are mostly used by certain applications and for most of their execution time,
thus possibly contributing to increased energy consumption and lower run-
time performance.

IPC-RQ3. Is the energy consumption of the IPC technologies proportional to
their run-time performance or resource usage?—For this research question,
we investigate a conflicting view among researchers: that energy consump-
tion is proportional to run-time performance. Moreover, we investigate if
energy consumption is in proportion with resource usage such as maximum
memory usage, number of page faults, and context switches. This can act as
an indication to warn developers regarding the energy consumption of their
applications and libraries.

We answer the above research questions by using a number of metrics. For IPC-RQ1,
we use energy consumption, that is, the product of the total power consumed and time
taken for an executed task. In addition, we collect run-time performance measurements,
that is the execution time of a task. For IPC-RQ2, we collect system calls, which are API calls
of an application that requests services from the user to kernel space. Finally, we use the
measurements of IPC-RQ1, themaximummemory set size, context-switches, and page faults
to answer IPC-RQ3. Themaximummemory set size indicates the totalmemory reserved for a
task, the number of context-switches shows the number of times a system requested services
from the kernel and the associated overhead, while page faults indicate memory pressure
during execution time.

3.1.3 Safeguards Research Questions

For our final study, we seek to examine the energy consumption and run-time performance
of diverse security measures enabled on computer systems. We identify the following
questions:
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SG-RQ1. What are the energy and run-time performance implications of the
security mechanisms on a computer system?—Corresponding answers may
lead to a more energy-aware usage of server systems. That is, if adminis-
trators or users turn off highly taxing security mechanisms in a secure envi-
ronment, then they could reduce energy consumption and increase run-time
performance. In addition, we can identify which security mechanisms intro-
duce noticeable performance overheads. Such findings may act as a guide for
potential refactorings in the source code.

SG-RQ2. Is the energy consumption of the examined security mechanisms
proportional to their run-time performance?—Note that recent related stud-
ies provide conflicting results. We attempt to shed light on this matter and
through our findings, help developers understand the energy requirements of
their applications with respect to their run-time performance.

SG-RQ3. How do security mechanisms affect the energy consumption and the
run-time performance of diverse applications and utilities?—In this context,
we examine various applications such as database systems, servers, memory-
intensive, compute-intensive, graphic-intensive applications, and so on. Con-
sequently, we can inform developers and administrators to disable security
mechanisms when they use relevant applications in an isolated environment.

3.2 Software Systems and Tools

The aimof this section is to elaborate on the tools, computer systems, datasets, programming
languages, and utilities adopted to perform our experiments. We discuss the studies on (1)
programming languages, (2) IPC technologies, and (3) security measures, respectively.

3.2.1 Programming Languages Subject Systems

Data Set. We made use of the Rosetta Code Repository, a publicly available repository for
programming chrestomathy. 1 Rosetta Code offers 1,077 tasks, 211 draft tasks, and has im-
plementations in 808 programming languages [99] (last checked November 2020). However,
not all tasks are developed in all programming languages thatwe have selected for our exper-
iments. To retrieve the online data set, we used a public Github Repository [6] that contains
all the latest developed tasks listed in Rosetta Code’s web-page.

Since there is a large number of programming languages implementations available in
Rosetta Code, we consulted the Tiobe website [164] to elicit the most popular languages.
Tiobe offers a monthly rating index of programming languages’ popularity, by estimating the
number of hits for a given search query on the Internet. The search query is applied on 25 of

1word stemming from the Ancient Greek “χρηστομάθεια” that means useful for learning
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Table 3.1: Programming Languages, Compiler and Interpreter Versions, and
Run-Time Performance Optimisation Flags

Categories Programming Compilers & Interpreters Optimisation
Languages Embedded Laptop Server Flags

C 6.3.0 6.4.1 6.4.1 -O3
C++ 6.3.0 6.4.1 6.4.1 -O3

Compiled Go 1.4.3 1.7.6 1.7.6 –
Rust 1.20.0 1.18.0 1.21.0 -O
Swift 3.1.1 3.0.2 3.0.2 -O

Semi-Compiled C# 4.6.2 4.6.2 4.6.2 -optimise+
VB.NET 4.6.2 4.6.2 4.6.2 -optimise+
Java 1.8.0 1.8.0 1.8.0 –

JavaScript 9.0.4 8.9.3 8.9.3 –
Perl 5.24.1 5.24.1 5.24.1 –

Interpeted PHP 5.6.30 7.0.25 7.0.25 –
Python 2.7.23 2.7.13 2.7.13 -O
R 3.3.3 3.4.2 3.4.2 –
Ruby 2.4.2 2.4.1 2.4.1 –

the highest-ranked search engines (according to Alexa) and it searches for programming lan-
guage hits across the web that: (1) refer to at least 5,000 hits for the Google search engine,
(2) are Turing complete,2 and (3) have their own Wikipedia page [165]. Taking Tiobe Octo-
ber’s 2017 index rating, we selected the top 14 programming languages. We excluded from
our initial list programming languages such as assembly, Scratch, Matlab, and Objective Pas-
cal, that have particular limitations, i.e., they are architectural, visually oriented, proprietary,
and OS-dependent, respectively. On the contrary, we included programming languages such
as R, Swift, Go, and Rust, although they were not among the top 14. We have selected R and
Swift because they had the next highest popularity in Tiobe. Also, we chose Go and Rust be-
cause they had one of the highest rise in ratings in a year and are considered to be promising
according to Tiobe [164]. The selected programming language categories (compiled, inter-
preted, and semi-compiled), along with their names, compilers and interpreters’ versions,
and compile-time performance optimisation flags are shown in Table 3.1. We selected the
highest possible performance optimisation flags, since some languages (e.g., Go) by default
apply the highest degree of optimisations. Regarding run-time configurations, we did not
use or tune any environmental variables.

After retrieving our data set, we had to filter, crop, andmodify it to adapt it to our study’s
needs. For instance, consider that most of the categories found in Rosetta Code, such as
arithmetic and string manipulation, offer more than one task. However, we had to use a
balanced data set of different types of tasks. Therefore, we developed a script that extracts
all the tasks that are implemented in at least half of the selected 14 programming languages.
We ended up with the 25 tasks shown in Table 3.2. Table’s 3.2 first and second columns list
the selected categories and the names of the tasks, as they were found on Rosetta Code’s

2can be used to emulate a Turing machine
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official website. The third column explains the tasks and the fourth column provides the
inputs that were used for each task; we tried to keep the original inputs as given from the
Rosetta Code task wiki pages. The fifth column shows the task name abbreviations as they
are used in Figures 4.1 and 4.2.

Handling the Data Set. To use the above-mentioned data set properly, we had to do sev-
eral amendments. Initially, we had to add each task to a for loop for making the run-time
execution of each task to last more than a second—since our power analyser, i.e., Watts Up
Pro [171], has a sampling rate of a second (lowest rate). The for loop’s iterations among the
tasks vary between a thousand to two billions of times. It is important to note that some im-
plementations last significantly longer. For instance, the exponentiation-operator for C and R
took 4.5 seconds and 109minutes, respectively, to execute the task two billion of times. This
happens because some tasks, like the exponentiation-operator, are implemented by hand.
Therefore, the energy consumption of Rosetta code snippets is not necessarily the same
of the energy consumption of the actual operations offered by the respective languages. In
addition, consider that some compilers and interpreters offer aggressive source code optimi-
sations. Then, once they find out that the same function is being repeated multiple of times,
they optimise their native code to avoid unnecessary calculations. To handle the above issue
and execute the same tasks multiple times, we made the programming tasks’ loop variable
dependent (made the number of iterations variable) to enforce different outcomes each
time. We also used volatile variables (whenever a programming language offered such an
option), whose value may change between different accesses. Furthermore, some of the
tasks developed in a specific language offered more than one implementation. Here, we
chose the one that was most similar to the implementations in the other selected program-
ming languages. For example, we added any required scaffolding, such as a main function
or libraries that needed to be installed and configured. We also developed from scratch the
tasks that were not implemented for all the programming languages of our selection when-
ever it was possible (e.g., multiple inheritance is not applicable in C#).

To execute all the tasks and collect the results, we developed a number of scripts that
are available for public use in our Github Repository [55]. In total, we wrote 2,799 lines
of source code in Bash, Python, and Java to compile, execute, collect, filter, and plot our
results. Moreover, we wrote 1,373 lines of source code to implement the missing tasks for
programming languages including C, C#, JavaScript, Perl, PHP, R, Rust, Swift, and VB.NET.

Experimental Platform. To perform our experiments, we used a Dell Vostro 470 (with 16
GiB RAM) server [78], an HP EliteBook 840 G3 Notebook laptop [70], and two Raspberry Pi
3b model [144], with an Intel i7-3770, an Intel i7-6500U, and a quad-core ARM Cortex-A53
micro-processors, respectively.

Hereafter, we refer to the server, laptop, and one of the RPis as computer node (CN) and
to the Watts Up Pro as WUP [171]. The CNs responsibility is to execute the tasks and to
retrieve their execution time using time [47]. In addition, we note that we used one of the
two RPis (the one is not acting as a CN) to retrieve the energy measurements from WUP’s
internal memory. We will refer to it as an energy monitoring system. Finally, to extract the
collectedmeasurements fromWUP’s internal memory, we used an open source Linux utility-
based interface available on GitHub [15].



45
/130

3.2.
SO
FTW

ARE
SYSTEM

S
AN
D
TO
O
LS

Table 3.2: Selected Categories, Tasks, Explanation, Input Test, and HeatMap Abbreviations

Categories Names Explanation Input Test Abbreviations

Arithmetic exponentiation-operator exponentiates integer and float 201712,19.8812 exp.-operat.
numerical-integration calculates the definite integral by using f (x) =

∫ 1
0 x3,102 num.-integ.

methods rectangular{left,right,midpoint}, f (x) =
∫ 100

1 1/x,103

trapezium, and Simpson’s for 10x f (x) =
∫ 5000

0 x,5× 105

approximations f (x) =
∫ 6000

0 x,6× 105

Compression huffman-coding encodes and decodes a string “huffman example” huffman
lzw-compression encodes and decodes a string “Rosetta Code” lzw-compr.

Concurrent concurrent-computing threads creation and printing [Enjoy,Rosetta,Code] conc.-comp.
synchronous-concurrency shares data between 2 threads Random text file synch.-conc.

Data array-concatenation concats two integer arrays [1,2,3,4,5], [6,7,8,9,0] array
structures json serializes and loads json in data structure “foo”:1,“bar”:[“10”, “apples”]” json

File handling file-input-output reads from A and writes to B 10,000 unique binary files file-i/o

Recursion factorial factorial of n (10!) factorial
ackermann-function examples of a total computable function A(m,n) = n+1,A(m,n) = A(m−1,1), ackermann

that is not primitive recursive A(m,n) = A(m−1,A(m−1,1))
palindrome-detection finds if word is palindrome “saippuakivikauppias” palindrome

Regular regular-expression matches a word from a sentence and then “this is a matching string” regex
Expression replaces a word

Sorting {selection, insertion, sorts an array of 100 random elements [the same 100 random selection, insertion,
algorithms merge, bubble,quick} elements for all cases] merge ,bubble, quick

String url-encoding encode a string “http://foo bar/” url-encode
manipulation url-decoding decode a string “http%3A%2F%2 ffoo+bar%2fabcd” url-decode

Object call-an-object-method calls a method from an object obj-method
Oriented classes creates an object classes

inheritance-multiple invokes inherited classes methods inher.-multi.
inheritance-single invokes inherited class method inher.-single

Functional function-composition pipes a function’s result into another sin(asin(0.5)) func.-comp.
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3.2.2 IPC Subject Systems

Experimental Platform: We performed two experiments to consider different contexts and
environments. For the former, we used two Lenovo ThinkCentre M910t platforms [82],
where one was acting as a server and the other as a client. In a similar way to the above,
we utilised two Raspberry Pis 3B model (RPi), to simulate an IoT test case. In the context
of this study, we will refer to the Lenovo and RPis platforms as Intel and ARM platforms,
respectively. To retrieve energy consumption, we utilised an external device, WUP. Also, we
used an additional RPi to fetch the energy measurements, from theWUP’s internal memory,
in real-time with the help of a Linux-based open source utility interface [15]. We followed
this approach to avoid further overhead on the server and client instances that could impact
their energy consumption. To collect the run-time performance, we used the Linux time
command to yield the wall-time of our implementations. We used the wall-time because
WUP offers coarse-grained measurements for the whole computer platform and not only
when a process is utilising the CPU. Figures 3.1a and 3.1b depict the platform connectivity
between the subject systems.

Programming Languages: In order to select our programming languages, we employed the
GitHut.info [71] and PyPL [110] web pages (December 2018). GitHut.info offers informa-
tion concerning the popularity of various programming languages by taking into account the
GitHub active repositories, total number of pushes, and so on. PyPL administers its rank-
ing based on the frequency by which a programming language tutorial has been searched
on Google every month. We picked the first six most popular and active programming lan-
guages according to the GitHut.info and PyPL statistics, which were JavaScript, Java, Python,
PHP, Ruby, and C#. In addition, we included in our selection Go, because it is one of the
programming languages that earned the highest popularity the recent years, according to a
Tiobe study [1].
IPC Technologies: The selected IPC technologies varied among REST, RPC and gRPC. REST
is a stateless architecture style for distributed systems, widely adopted for offering world-
accessible APIs. RPC is a publicly known way of causing a procedure to execute remotely.
We selected and used the RPC and REST libraries as shown in the next paragraph. We
also studied gRPC, a RPC technology developed by Google that uses Protocol buffers 3 and
HTTP/2 to boost its speed and interoperability between services. We selected gRPC since
many companies that are using micro-services (e.g., Netflix, Cisco, CoreOS) are adopting
it in their production. Also, gRPC offers library implementations in diverse programming
languages making it a suitable candidate for our empirical study.

WebFrameworks: Weusedweb frameworks to build our end-points for the server and client
function; however, for this research, we do not examine their impact. To select them, we
employed the HotFrameworks [53], that provides a monthly ranking on web frameworks’
popularity based on the numbers of GitHub stars and StackOverFlow tagged questions. For
JavaScript, we selected Express since the AngularJS and React are front-end development
frameworks. Also, we excluded Django and kept Flask for Python since Django started los-
ing popularity after 2017. For C#, we used ASP.NET because it is the most influential web
framework. Likewise, we selected Ruby on Rails and Laravel for Ruby and PHP to develop
the RESTful tasks, respectively. For Ruby and PHP RPC tasks, we could not find any official
implementation of Laravel and Ruby on Rails; therefore, we wrote the RPC tasks using the
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Figure 3.1: Experiment setup for Intel and ARM systems

JSON-RPC 2 library. For Go, we selected its built-in packages since the HotFrameworks does
not offer any in its ranking. We selected JAX-RS and JAX-WS for Java since the Spring is a com-
plete and heavy framework for the simple test case we would like to compare. Also, we have
select JAX-RS and JAX-WS because Spring did not offer RPC implementation. For gRPC, we
utilised the latest available versions for each of the selected programming languages which
are publicly available on GitHub.3

Table 3.3: Experimental Setup Parameters

Programming Compilers & Interpreters IPC Technology Packages and their Versions
Languages Servers RPis REST Version RPC Version gRPC Version

Go 1.9.4 1.9.4 NET/HTTP 1.9.4 NET/RPC 1.9.4 gRPC-Go 1.17.0
Java 1.8.0 1.8.0 JAX-RS 2.1.0 JAX-WS 2.1.0 gRPC-Java 1.17.0
JavaScript 10.4.0 10.4.0 Express 4.16.3 Express–RPC 0.0.4 gRPC-Node 1.17.0
Python 2.7.14 2.7.14 Flask 1.0.2 Flask–RPC 1.0.2 gRPC-Python 1.17.0
PHP 7.2.12 7.2.12 Laravel 5.7.15 JSON-RPC 2.0 gRPC-PHP 1.17.0
Ruby 2.5.3p 2.5.3p Rails 5.1.6 JSON-RPC 2.0 gRPC-Ruby 1.17.0
C# 4.8.0 4.8.0 ASP.NET 2.1.5 ASP.NET 2.1.5 gRPC-Csharp 1.17.0

Test Case: To perform our experiment, we either used existing or developed missing
HelloWorld examples that are making use of the three IPC technologies discussed in this
section. For gRPC, we could not test a PHP-written server program because currently there
is none available.4 Therefore, we performed the experiment using a JavaScript server code
as suggested in the official documentation. Likewise, it was not possible to compile the C#’s
gRPC source code for the ARM platform; therefore, we did not execute the C#’s gRPC for the
corresponding platform. The reason we selected a straightforward scenario is that we were

3https://github.com/grpc
4https://grpc.io/docs/tutorials/basic/php.html

https://github.com/grpc
https://grpc.io/docs/tutorials/basic/php.html
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Table 3.4: The Phoronix [161] Benchmark Suite Used in Our Measurements

Category Benchmark Suites

Audio Encoding encode-mp3, encode-flac
Video En-
code/Decode

dav1d, svt-av1, svt-hevc, svt-vp9, vpxenc, x264, x265, ffmpeg

Code Compila-
tion

build-php, build-linux-kernel, build-gcc, build-gdb, build-llvm, build2

File Compression compress-p7zip, compress-bzip2, compress-zstd, compress-xz, lzbench
Database Suite sqlite, redis, rocksdb, cassandra, mcperf, pymongo-insert

CPU Massive

aircrack-ng, apache, blogbench, brl-cad, byte, cloverleaf, cpp-perf-bench, crafty,
dacapo-bench, ebizzy, embree, fhourstones, glibc-bench, gmpbench, himeno, hint,
hmmer, hpcg, javascimark2, m-queens, minion, nero2d, nginx, node-express-
loadtest, numenta-nab, phpbench, primesieve, pybench, pyperformance, rodinia,
rust-prime, scimark2, stockfish, swet, sysbench, sudokut, tensorflow, xsbench,
sunflow, bork, java-jmh, renaissance, tiobench, openssl, blake2s, john-the-ripper,
botan, octave-bench, oidn

Disk Suite fs-mark, iozone, dbench, postmark, aio-stress
Kernel schbench, ctx-clock, stress-ng, osbench
Machine Learn-
ing

rbenchmark, numpy, scikit-learn, mkl-dnn

Memory Suite ramspeed, stream, t-test1, cachebench, tinymembench, mbw
Networking Suite iperf, network-loopback
Imaging graphics-magick, inkscape, rawtherapee, tjbench, dcraw, darktable, rsvg, gegl

Renderers
tungsten, ospray, aobench, c-ray, povray, smallpt, ttsiod-renderer, indigobench,
rays1bench, j2bench, qgears, jxrendermark

Desktop Graphics xonotic, openarena, tesseract, paraview, unigine-valley, unigine-heaven, nexuiz,
glmark2

mainly concerned with examining only the cost of different remote IPC technologies when
they are invoking remote procedures. More specifically, the client makes some remote
procedure invocations towards the server’s HelloWorld function, and the server replies
with a “Hello World” message. Table 3.3 illustrates the selected programming languages,
their compiler and interpreter versions, and the used IPC technology packages and versions
for each programming language implementation.

Execution Scripts: To control our experiment’s workflow, we wrote around 1,800 lines of
Unix shell scripts to automate the execution, data collection, and results plotting process.
All scripts are publicly available on GitHub.5 For executing the tasks, we included the “Hello
World” function, that makes the remote procedure call, in a loop of 20,000 and 5,000 itera-
tions for the Intel and ARM computer systems, respectively. We took such an action to force
the execution time of a task to take over a second. We did this because the Watts Up Pro
performs power sampling and reports the collected energy measurements, on a per second
basis.

5https://github.com/stefanos1316/Rest_and_RPC_research/scripts

https://github.com/stefanos1316/Rest_and_RPC_research/scripts
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Table 3.5: Hardware Platform

System Kaby Lake (x86)

Microarchitecture Kaby Lake
Processor/Soc Core i7-7700
Cores× threads 4× 2
Base Frequency 3.6 GHz
Max Frequency 4.2 GHz
Cache line size 64 B
L1-D/L1-I Cache 4 x 32 KiB 8-way
L2 cache 4 x 256 KiB 4-way
L3 cache 8 MB 16-way
I-TBL 4-KByte pages, 8-way
D-TBL 1-GB pages, 4-way
L2-TBl 1-MB, 4-way
RAM 16 GB UDIMM, DDR4 2400

3.2.3 Safeguards Subject Systems

Computer Platform: We used a Lenovo ThinkCentre M910t equipped with an Intel i7700
Kaby Lake processor, running Ubuntu 18.04.1 OS (kernel version: 5.3.0-40-generic). We have
selected Ubuntu because currently, it is the most popular OS used by servers worldwide [3].
Table 3.5, details the characteristics of our target platform.

To collect our energy measurements, we used the perf6 profile monitoring tool that
utilises the Running Average Power Limit (RAPL)7 framework. RAPL uses hardware perfor-
mance counters to estimate the energy consumption of the CPU cores, package,8 and main
memory. In our experiments, we used the main memory and package readings, because
the package offers measurements for the cores, cache, and embedded GPU. Note that RAPL
is a well-established utility that has already been used in related work [41, 124, 101] and its
accuracy was validated by various studies [75, 43, 116, 74] and offers high sample interval
(a reading per 1 msec).

Benchmarks: To observe how security mechanisms affect diverse settings and computer
components, we used Phoronix [161], a well-established benchmark suite that is composed
of various open-source benchmarks. We used various benchmark suites such as audio and
video encoding, compilation, compression, computational, cryptography, databases, disk,
memory, games and more. Some benchmarks required the creation of account in order to
download specific packages or libraries. Therefore, we excluded them from our dataset, be-
cause they do not allow us to automate the installation of our dataset. Table 3.4 shows the
different categories as defined in the official site of Phoronix with the corresponding bench-
mark suites. Note that some benchmarks can be found in more than one category. We have
selected Phoronix because it covers a large set of tasks and can illustrate the whole picture

6https://perf.wiki.kernel.org/index.php/Main_Page
7https://01.org/rapl-power-meter
8cores and uncore components

https://perf.wiki.kernel.org/index.php/Main_Page
https://01.org/rapl-power-meter
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regarding the impact of security mechanisms.
Phoronix executes a large number of benchmark suites to verify a computer system’s per-

formance and throughput. Therefore, we developed a number of scripts to (1) download and
install all 128 benchmark suites, (2) install all system dependencies and packages to execute
the benchmarks, (3) generate input data for the benchmarks, (4) execute benchmark suites
tasks, and (5) collect energy, run-time performance, and resource usage measurements.

Some of the benchmarks are measuring throughput for a specific period of time.
However, to compare the energy consumption and run-time performance of such bench-
marks, we modified the source code of those benchmarks to perform a specific number of
operations and then terminate. We took such an action to compare the energy needed from
a task to perform a specific number of operations with the security mechanism enabled to
the energy consumption of the same tasks with the security measures disabled. To examine
memory zeroing, we used the redis-benchmark [2] utility because of its memory allocation
flexibility. Focusing on HTTPS we used the client / server built-in libraries of Node.js without
changing any of the default cipher suites. Note that we did not focus on the cipher suites be-
cause Potlapally et al. [137] have already studied their energy and performance implications.

Scenarios: To produce our results, we ran the benchmarks in different setups. First, we
executed all the benchmarks included in Table 3.4 with all CPU vulnerability patches enabled.
Then, we executed the benchmarks by only disabling either (1) Meltdown, (2) Spectre, (3)
and MDS together with TAA. Note that we disabled both MDS and TAA because the latest
kernel updates do not allow users to disable MDS or TAA separately. Finally, we disabled
all CPU vulnerability patches and ran the benchmarks again. We used the system’s Grub
bootloader to configure all the setups for the corresponding CPU vulnerability patches.

The GCC toolkit offers a vast set of security flags. However, we narrowed our scope and
examined the ones recommended in the RetHat’s Developers site.9 Also, we choose GCC
safeguards that are (1) compatible with our processor, (2) supported by the corresponding
GCC version (7.5–latest for the Ubuntu OS at the time of the experiment), and (3) available
for both C and C++ code. Specifically, we investigate the following safeguards (1) -fno-stack-
protector that stops GCC from emitting extra code to check for buffer overflows, such as
stack smashing attacks, (2) -z execstack that allows instructions execution of any memory
page in the stack, (3) -no-pie and -fno-pic that prevent the loading of binaries, dependen-
cies, and code into arbitrary memory locations, (4) -Wl,-z,norelro that disable protection
against Global Offset Table overwrite attacks, and (5) -U_FORTIFY_SOURCE to avoid
buffer overflow detection on run-time. To this end, we run the benchmarks by enabling and
disabling all the above safeguards and then enable them one at a time.

In a similar manner, we performed requests between the NodeJS client and server over
HTTPS and then over HTTP. To work with HTTPS, we generated self-signed certificates.

To perform calculations related to memory zeroing, we first measured memset when
zeroing large blocks of memory. Then, we ran four different Redis functions (i.e., set, lpush,
hset, and lrange) and traced the system memory allocations.

Whenwe performed our experiments we set the CPU frequency governor to the “perfor-
mance”mode. We did this to avoid the dynamic voltage and frequency scaling (DVFS) power
management policies. Such policies may reduce the power of embedded GPUs with rea-
sonable performance degradation. We also avoided using governors such as “ondemand”

9https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/

https://developers.redhat.com/blog/2018/03/21/compiler-and-linker-flags-gcc/
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and “powersaving” because they are more suitable for experimenting with large clusters
and systems and they can introduce power saving mechanisms that can degrade the run-
time performance of a program [38, 160]. Contrariwise, our experiments involved micro-
benchmarks.

3.3 Research Method

In this section, we discuss precaution and necessary measures that we took to ensure the
correctness of our results. Moreover, we describe an experiment that we performed to en-
sure the accuracy of our measurements obtained fromWUP against an oscilloscope.

3.3.1 Programming Languages Measurements Collection

Our calculations are based on Energy-Delay Product (EDP), an equation introduced by
Horowitz et. al [69] and applied as a weighted function by Laros III et al. [80]. The EDP
is defined as follows:

EDP = E × T w (3.1)

Using the term E, we denote the total energy consumed by a particular task from the start
until its finish time. T is the total execution time of a task. The exponentw denotes weights,
and it can take the following values: 1 for energy efficiency, when energy is of major concern;
2 for balanced, when both energy consumption and performance are important; 3 for per-
formance efficiency, when performance is most important. Here, we kept the exponent w
equal to 1 (to compare energy/performance in equal terms) to address PL-RQ1 and PL-RQ3,
and we used all three weights (to see how performance affects the average EDP) to answer
PL-RQ2 in Section 4.1.

We chose EDP among other energy metrics (e.g., Greenup, Speedup, and Powerup [5])
because normalised EDP can offer fair comparisons among programming implementations,
which run on different execution platforms. Contrary to Abdulsalam’s et al. study [5], we
do not evaluate the efficiency of optimisations, where performance and energy is measured
separately.

Before collecting our measurements, at the computer nodes’ boot time, we had to
ensure a stable condition (where the energy usage is stable) before starting to retrieve
measurements—we defined a waiting period of a minute to avoid adding overhead to our
results. As it is suggested by Hindle [67], we tried to shut down background processes found
in modern operating systems, such as disk defragmentation, virus scanning, cron jobs, auto-
matic updates, disk and document indexing, and so on, to minimize possible interference to
ourmeasurements. Additionally, to ensure our systems’ stable condition, we used the Linux-
monitoring sensors tool, i.e., the lm_sensors [148] for the server and laptop platforms and
vcgencmd [49] for the RPi. We used lm_sensors and vcgencmd to retrieve the systems’ tem-
perature. If the systems’ temperature was found high compared to its idle temperature, it
could be possible that the systemwas using its fans to cool down (thus consuming additional
energy) and the processor’s clock speed might scale down (reducing run-time performance)
to avoid overheating. On such occasions, our script stalled the execution of the next task’s
implementation until the system reached a stable condition.
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Upon reaching a stable condition, our script initiated the execution of the tasks. Before
the execution of a task the computer node sent an SSH command to the energy monitoring
system device to start retrieving energy measurements from the WUP’s internal memory.
By the end of the whole use case, the energy monitoring system had collected and sent the
energy measurements to the computer node through the scp utility. When the results were
received by the computer node, a plotting script depicted them in the form of heatmaps.

3.3.2 IPC Measurements Collection

To perform our experiment, we followed the experimental approach described below.

• We started our computer systems and stopped unnecessary background processes
according to suggestions by Hindle [67] and waited for our system to reach a stable
condition i.e., where the energy consumption was idle (23 and 1.5 Joules for Intel and
ARM processor, respectively).

• Then, we started our execution script that initiated, through SSH, the (1) server in-
stance to receive requests, (2) the RPi to retrieve energy consumption measurements
from WUP’s internal memory, and (3) the client to perform the tests and collect exe-
cution time.

• When any IPC implementation finished with its execution, we left a small window of
a minute, using the Linux sleep command, to avoid tail power states [22] and to allow
our device to reach the stable condition before executing the next implementation.

• Once the whole experiment was done, all the data from the nodes (i.e., the client
and RPi) were transferred to the server, using the scp utility, to sanitise the energy
measurements from the idle time and plot graphs.

Because we had only a single WUP at our disposal, we executed the above experiment
twice, once for measuring the Intel’s server instance energy consumption and once for mea-
suring the client’s consumption. Afterwards, we performed the same experiment for the
ARM platforms. To minimise measurement noise, we performed each experiment 50 times
and computed descriptive statistics such as the standard deviation,mean, andmedian values
of energy consumption and run-time performance. By plotting histograms10 for each of the
programming language IPC implementations, we observed that our measurements exhibit a
lot of variance. To this end, we decided to retrieve and depict as results the median values
(shown in Chapter 4).

3.3.3 Accuracy of obtained Results

According to Saborido et al. [150], a low sampling rate might miss energy consumptionmea-
surements appearing for a short period (energy spikes). Therefore, using a device such as
the WUP could output imprecise measurements.

To evaluate if the above statement is true and obtain more samples, we performed ex-
periments on the RPis with some JavaScript and Go tasks, that exhibited low energy and

10https://github.com/stefanos1316/Rest_and_RPC_research/tree/master/arm/statistics_client
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Figure 3.2: Client (top) and server (bottom) waveforms of gRPC task implemented in
JavaScript running on ARM platforms

Table 3.6: Comparison between Watts Up? Pro and Oscilloscopes Measure-
ments

IPC Language Device Accuracy Average Power (in Watts)
Server Client

WUP ± 5% 1.94 2.04gRPC JavaScript Oscilloscope ± 6% 1.90 2.09

RPC Go
WUP ± 5% 1.77 2.00
Oscilloscope ± 6% 1.81 2.13
WUP ± 5% 1.68 1.88

REST Go Oscilloscope ± 6% 1.71 2.02

run-time performance. To perform these experiments, we had at our disposal: (1) an oscil-
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loscope11 connected with a current probe12 and (2) a multimeter.13 We first connected the
multimeter and the current probe on a live cable of an extension, where a computer system
was plugged in. Next, we compared the oscilloscope’s current measurements (obtained as
input from the current probe) against the multimeter’s. We utilised a multimeter (as ground
truth for current measurements) to ensure that its measurements aligned with the current
probe’s. We then made the appropriate settings to the oscilloscope (input voltage, scaling,
and true root mean square measurements) according to the current probe’s specifications.
Also, we measured the average Direct Current (DC) for the tasks execution time by using the
oscilloscope’s between rulers option (see the dashed lines of Figure 3.2), which allows to
obtain measurements for a specified period of time.

Figure 3.2 depicts the server and client waveforms while executing the gRPC task with
a sampling rate of 200,000 units per second. The X -axis illustrates the sampling duration
in seconds, while the Y -axis shows the current measurements in Amperes. We present the
results obtained from the waveforms in Table 3.6. Specifically, we show the related task, the
language it was implemented with, the devices used tomeasure its energy consumption and
their accuracy, and the average power consumption for the client and server implementa-
tions. For the oscilloscope, we obtained our measurements in current and multiplied them
with 5V (RPi’s power supply) to obtain power consumption. The results indicate that the
WUP’s measurements fall slightly shorter than the oscilloscope’s (i.e., 2–7.1%). This hap-
pens because the oscilloscope exhibits measurements with the precision of millisecond for
the tasks execution (e.g., 4.432 seconds), while theWUP captures per secondmeasurements
(e.g, 4 seconds). Therefore, if a task elapses somemilliseconds after theWUP reports energy
consumption then the energy consumption until the next second will also be added in the
average DC, that is partially idle energy consumption of the RPi.

3.3.4 Safeguards Measurements Collection

First, we stopped all unnecessary background processes (as suggested in other similar stud-
ies [67]) to let our system reach a stable condition (i.e., where the energy consumption is
idle). Then, we started executing tasks to obtain their energy and run-time performance. Af-
ter the end of each task execution, we let the computer platform idle for one minute (using
the sleep command). In this manner, we were able to avoid tail power states [22] and allow
the system reach a stable condition again (idle energy consumption) before executing the
next task.

To reduce noise in our measurements, we executed the above steps five times for each
scenario by using the -r 5 command-line argument that outputs the average value of the
five executions and the percentage of difference among the five mean values. We used the
mean values to present our results, because the difference among the five executions for
each task ranged between 0% to 6%, with the majority of them being below 1%. The above
fact indicates that a task’s measurements do not diverge much among different executions.
Collecting performance measurements for a single CPU vulnerability patch in the aforemen-
tioned manner took more than three days. Likewise, for each of the GCC safeguards, the

11https://www.picotech.com/oscilloscope/3000
12http://www.all-sun.com/EN/d.aspx?pht=1066
13https://www.uni-t.cz/en/p/multimeter-uni-t-ut139c

https://www.picotech.com/oscilloscope/3000
http://www.all-sun.com/EN/d.aspx?pht=1066
https://www.uni-t.cz/en/p/multimeter-uni-t-ut139c
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experiment took more than two days. Finally, the measurement collection for memory ze-
roing and HTTPS communications, took less than an hour.

3.4 Threats to Validity

Our studies may have internal, external, and reliability validity issues. Here, we reveal the
sources of such problems for each one of our studies.

3.4.1 Programming Languages Limitations

Internal validity. First, we used cabled instead of a wireless connection, because the former
ismore energy-efficient than the latter [16]. However, the use of different protocols provided
by the network connection might cause additional overhead. Also, the laptop we used has
irremovable battery and in case of discharge, the power supply immediately starts charging.
This may also introduce additional overhead.

Second, WUP offers aggregate sampling and reports a sample per second. This means
that the energy consumption of the operations that last less than a second is not reported.
Therefore, such cases are excluded from our final results. Having full control over the OS’s
workload and background operations is hard, because, at any time, different daemons may
operate. This could affect our calculations, too. Lastly, given that there exist several compiler
and run-time versions of the programming languages we used, we cannot precisely calculate
their impact on EDP.

Third, in Rosetta Code, not all tasks are implemented in all programming languages. For
example, the classes and call-an-object-method tasks are not applicable to programming lan-
guages such as C, Rust, and Go. We have tried to keep the original snippets of Rosetta Code
intact and apply only minor changes when needed e.g., adding a main function, changing
from iterative to recursion, and using structs. Consequently, some of the tasks might not
reflect their most efficient and optimal implementations, resulting to higher EDP.
External validity. According to Sahin et al. empirical studies that use real applications (e.g.,
mobile ones) show different energy consumption results from studies that use micro bench-
marks (i.e., traditional desktop software) [154]. This mostly occurs because desktop or data
center software is CPU bound, whereas mobile applications are more interactive. In addi-
tion, for mobile devices, screen, radios, and sensors—and not the CPU—consume most of
the device’s battery. Admittedly, since our study’s results are based on benchmarks, our
findings could be different for real software.

Finally, we have evaluated the EDP of 25 programming implementations written in 14
programming languages, and running on three platforms. Thus, it is currently difficult for us
to generalise our arguments for other programming languages and computer platforms.
Reliability validity. We host all the used scripts and the obtained data in our GitHub reposi-
tory 14 to allow the replication of our study.

14https://github.com/stefanos1316/Rosetta_Code_Research_MSR

https://github.com/stefanos1316/Rosetta_Code_Research_MSR
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3.4.2 IPC Limitations
Internal validity. Having full control over our operating systems’ workload and background
operations is hard, because, at any time, different daemons may operate. Also, when a task
is executing and enters in a waiting state (e.g., due to an I/O operation) the WUP will still
record the energy consumption of our computer platform. This could affect our calculations,
too.

For the Java’s gRPC tasks, we were not able to compile its native extensions on the em-
bedded systems. However, because of the JVM, wewere able to execute the task of the Intel
platform on the embedded systems without the need to compile it. Therefore, we are not
aware to which extent this fact can affect our results.
External validity. For our study, we used a simple micro-benchmark to evaluate the energy
implications of IPC technologies. As discussed by Sahin et al., this may not always depict the
whole image regarding the energy implications in a real-world application [154].

Finally, we evaluate the energy consumptionand run-timeperformanceof three IPC tech-
nology tasks written in seven programming languages, and running on server platforms and
embedded systems. Hence, we are not sure to which extent we can generalise our argu-
ments for other programming languages or platforms.
Reliability validity. The scripts/data are open source for the replication of the study on out
GitHub repository.15

3.4.3 Safeguards Limitations
A threat to the internal validityof our experimentmay involve running backgroundprocesses
and daemons while we collect data. Indeed, having total control over all background pro-
cesses or daemons of a system is difficult. Therefore, this could have affected our measure-
ments to some extent. Also, obtaining energy measurements via RAPL, outputs fine-grained
metric results of specific computer components such as CPU, RAM, and package (cores and
uncore components). Therefore, we were unable to measure the impact on components
such as NIC or HDD. As a result, we do not have a holistic view of the energy consumption of
the network or disk benchmark suites.

As wementioned earlier, we experimented only on one platform running a specific oper-
ating system which is a threat to the external validity of our experiment. Hence, we cannot
argue that the same energy or run-time performance implications will persist on other plat-
forms or operating systems. In addition, we only focused on micro-benchmarks and not on
large applications. Note that, Sahin et al. [154] have pointed out that energy consumption is
different in the case of real-world applications than the one observed in micro-benchmarks.

For reliability validity, we publicly offer our scripts to install any requirement, library, or
dependency needed by our benchmarks though an Ansible file.16 Moreover, the data of our
experiment can be found on the same link.

15https://github.com/stefanos1316/Rest_and_RPC_research
16https://github.com/stefanos1316/phoronixDataSet.git

https://github.com/stefanos1316/Rest_and_RPC_research
https://github.com/stefanos1316/phoronixDataSet.git


Chapter 4

Results

In this chapter, we show the collected results of our experiments. We discuss our results
regarding the energy consumption and run-timeperformance of (1) programming languages,
(2) remote IPC technologies, and (3) security mechanisms.

4.1 Programming Languages Results

In this section, we discuss the EDP results for the selected platforms and tasks. We also
compare their EDP when the implementations run on different software platforms.

After we collected our results, we ranked the tasks based on their EDP value. For each
particular task, we took the lowest EDP value and we used it to normalise themeasurements
of similar tasks. Some of the resulting values varied substantially among the selected plat-
forms. Therefore, we used the base ten logarithm to make our values easier to plot. Finally,
we plotted a number of heatmaps that depict the EPD that each language implementation
achieved for the selected tasks.

Figure 4.1 illustrates the logarithmic base 10 EDP results for the server platform when
performance is more important than energy. The y and x axes show the programming lan-
guages and the tasks, respectively. To this end, entries with 0 in Figure 4.1, correspond
to the programming languages that achieved the lowest score of EDP for particular tasks,
as 0 = log1 after normalising. The green color in the heatmap shows higher efficiency, in
terms of EDP, while red shows lower efficiency. The programming languages’ scores for each
task are sorted from top to bottom and the tasks from left to right, starting from the lowest
to the highest average EDP.

Due to space constraints, we only added one of the nine plotted heatmaps. The remain-
ing heatmaps can be found in Appendix A.

4.1.1 PL-RQ1. Which programming languages are the most EDP-efficient
and inefficient for particular tasks?

To answer this research question, initially, we discuss the results of each platform by group-
ing them into categories. We identify in which categories, of Table 3.2, specific program-
ming languages show efficient or inefficient results—we consider a programming language
implementation X to be more efficient than Y if X ’s EDP value is lower than Y ’s. Then, we
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present programming languages’ EDP implications that cannot be grouped into categories.
Note that for the tasks classes and call-an-object-method, if a non-object-oriented imple-
mentation achieved better results, we excluded it and we picked the next one that had a
better EDP result. We took such an action because some languages do not offer classes and
call-an-object-method. For instance, C implements the above tasks using struct. Therefore,
if C implementation for the task classes offered the lowest EPD and C++ the second lowest,
then we picked the C++ implementation. Finally, we show the confidence interval, mean,
and margin or error, for all the programming language implementations of a particular task.

Table 4.1 lists results by giving the task’s name, the most (min) and least (max) EDP-
efficient programming language implementations for the relevant task, and the correspond-
ing difference. The difference is shown as the number of times a particular implementation
is more EDP-efficient than the other, in terms of the base ten logarithm EDP value. The dif-
ference between the most and least efficient raw values differed significantly, even close to
billions of times in some cases. For instance, if the EDP’s raw value difference between the
minimum and themaximum is equal to 10,000,000, that would result in a base ten logarithm
of 7. We, therefore, used the base ten logarithm of the following ratio:

log10(p/pmin) (4.1)

Where p is the measurement and pmin is the minimum value of EDP for each task. If x =
log(p/pmin), the language giving pmin is x times more efficient than p’s implementation in
logarithmic terms, that is, 10x times more efficient. Finally, we show in Figure 4.2 the score
of EDP results for all programming languages, for each task, using box plots.

4.1.1.1 Embedded System Results

Grouped into Categories. The collected results, in Table 4.1 for the embedded system, show
that C and Rust provide better EDP results than Perl, Swift, VB.NET, and R for tasks located
under the category of arithmetic, compression, and data structures. C also performs more
efficiently for the tasks falling under the concurrency category, by being 4.7 times more
efficient than Perl. In terms of file-handling, Rust offers the best efficiency against Swift
by 4.2 times. JavaScript is the programming language that achieves 3.8 times better EDP
results for the regular expression category, compared to Java. For almost all sorting tasks,
Go implementations are 3.9 to 6.5 times more EDP-efficient compared to Swift, R, and
Ruby. For performing functional tasks, C++ is proven to be 7.9 timesmore efficient than Swift.

Uncategorised Implications. The most EDP-efficient implementations for the tasks falling
under the recursion category are provided by the Go, VB.NET, and Swift implementations.
More specifically, Go performs 4.7 times more efficiently for ackermann-function than R,
VB.NET outperforms R by 3.6 times for palindrome-detection, and Swift outruns PHP by 4.1
times for the factorial task. For the url-encoding and decoding tasks, C and PHP achieve
EDP efficiency of 6.3 and 7.3 times more than Java and R, respectively. For the OO tasks,
the most efficient implementations vary: (1) C++ outperforms Python 5.6 times for the call-
an-object-method task; (2) JavaScript outperforms R 5.1 times for the classes task; (3) Ruby
outperforms JavaScript 7.9 times for the inheritance-multiple task; and (4) C++ outperforms
JavaScript 3.6 times for the inheritance-single task.
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Table 4.1: All System Tasks EDP

Embedded Laptop Server
Task’s Name Implementations Logarithmic Implementations Logarithmic Implementations Logarithmic

Min Max Ratio Min Max Ratio Min Max Ratio

exponentiation-operator C R 6.84 C R 5.81 Go Python 4.74
huffman-coding C VB.NET 4.94 C VB.NET 4.54 C VB.NET 4.39
numerical-integration Rust Perl 5.60 C VB.NET 4.20 C VB.NET 3.35
lzw-compression Rust Swift 9.56 C Java 4.10 C Java 4.46
concurrent-computing C Perl 4.79 C C++ 6.00 C Rust 5.05
synchronous-concurrency C Perl 0.57 C++ VB.NET 1.88 C VB.NET 2.12
array-concatenation C R 4.34 C Java 4.41 C Java 4.35
json Rust Swift 4.93 PHP Java 4.90 VB.NET Java 4.46
file-input-output Rust Swift 4.27 Rust VB.NET 4.44 C Swift 4.68
factorial Swift PHP 4.03 VB.NET R 4.42 C# R 4.46
ackermann-function Go R 4.77 C# R 4.88 Perl R 5.06
palindrome-detection VB.NET R 3.66 VB.NET R 5.06 C R 5.01
regular-expression JavaScript Java 3.88 JavaScript Java 4.40 JavaScript Java 4.38
merge-sort Go R 6.52 Go Swift 4.74 Go Swift 4.68
insertion-sort JavaScript R 5.13 JavaScript R 4.21 Go R 4.72
quick-sort Go Swift 5.00 C# Swift 5.48 Go Swift 5.55
selection-sort Go Ruby 3.98 JavaScript R 3.60 C# R 3.52
bubble-sort Go R 4.84 C# Swift 4.60 Go Swift 5.13
url-decoding C Java 6.36 C++ Java 4.87 C Java 5.36
url-encoding PHP R 7.38 PHP R 5.64 PHP R 5.06
call-an-object-method C++ Python 5.62 JavaScript Perl 7.16 C++ R 6.93
classes JavaScript R 5.10 JavaScript R 6.86 JavaScript VB.NET 6.79
inheritance-multiple Ruby JavaScript 7.94 C++ JavaScript 5.89 C++ JavaScript 3.32
inheritance-single C++ JavaScript 3.60 C++ Java 1.79 C++ Java 1.68
function-composition C++ Swift 7.96 C++ Perl 5.62 C++ Java 4.48
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4.1.1.2 Laptop System Results

Grouped into Categories. Table 4.1 shows the results for the laptop platform where C
performs 4.1 to 5.8 times more efficiently for the tasks grouped under arithmetic and
compression. The file-handling category, which includes I/O operations, performs better
in Rust’s implementation, which is 4.4 times more EDP-efficient than VB.NET’s. Recursion
category implementations (ackermann-function, palindrome-detection, and factorial)
prove to be 4.4 to 5.1 times more EDP-efficient when using the .NET framework (for C#
and VB.NET) in contrast to R. For the regular expression category, JavaScript’s pattern
matching and replacing operations performs 4.4 times better than R’s. Likewise, for the
tasks classes and call-an-object-method, found under the OO category, JavaScript offers
the most EDP-efficient implementations by being 6.8 to 7.1 times more efficient than R
and Perl, correspondingly. For the remaining tasks under the OO category (multiple and
single inheritance), C++ has the best implementations. Also, C++ outperforms Perl for the
functional category by being 5.6 times more EDP-efficient.

Uncategorised Implications. For the tasks concurrent-computing and synchronous-
concurrency, C and C++ achieve the best efficiency against C++ and Java by being 6 and 1.8
times more efficient, respectively. C and PHP outperform Java by being 4.4 and 4.9 times
more EDP-efficient for the array-concatenation and json tasks, correspondingly. For sorting
tasks like insertion and selection, JavaScript outruns R by 4.2 and 3.6 times. In addition, C#
shows 4.6 and 5.4 times more EDP-efficient results in contrast to R for bubble and quick sort-
ing. Also, Go performs 4.7 times more efficiently for merge sorting compared to Swift. For
the tasks of url-decoding and encoding, C++ and PHP perform 4.8 and 5.6 times better than
R.

4.1.1.3 Server System Results

Grouping into Categories. Table 4.1 for the server system, shows that C is the programming
language with the most efficient EDP implementations for the compression, concurrency,
and file-handling categories. Regarding the regular expression category, JavaScript offers
the best performance by being 4.3 times more efficient than Java. For most of the tasks
falling under the sorting category, Go performs 4.6 to 5.5 times more efficiently against R
and Swift. C++ outperforms JavaScript and Java for OO tasks such as single and multiple
inheritance by 1.6 and 3.3 times respectively. In addition, C++ performs 4.4 times better for
the functional category compared to Java.

Uncategorised Implications. For the server platform, Go and C achieve the best efficiency
for the exponentiation-operator and numerical-integration tasks, respectively. C and VB.NET
outrun Java by being 4.3 and 4.4 times more efficient for the data structures category,
correspondingly. C#, Perl, and C achieve 4.4, 5.1, and 5 times better results for the recursion
category than R. Moreover, C performs more efficiently for url-decoding and PHP performs
more efficiently for url-encoding against Java and R.



62 / 130 4.1. PROGRAMMING LANGUAGES RESULTS

C is the best in arithmetic, compression, and concurrency, while C++, Go, and
Rust are the runners-up. R, Perl, Swift, and Java show weak, overall, perfor-
mance in terms of EDP. Go is exhibiting the best EDP results for sorting algo-
rithms, Rust for file-I/O, JavaScript for pattern matching and replacing, and
C++ for function-composition.

4.1.1.4 Range of results

Figure 4.2 depicts the ranges of the EDP scores for each task that we measured in the three
platforms. Apart from a few tasks, our measurements have wide ranges—we note that we
are using a logarithmic scale.

For the embedded system, tasks such as file-input-output, inheritance-single, and
synchronous-concurrency exhibit smaller EDP scores. This does not happen for the laptop
and server platforms.

Our figures also show that outliers do exist for all three platforms. For instance, the
embedded system’s box plot has outliers for tasks such as function-composition, huffman-
encoding, lzw-compression, palindrome-detection, and for url-encoding. Similarly, for the
laptop platform huffman-coding and lzw-compression indicate that specific programming
languages can offer much more gains in terms of EDP.
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(a) Embedded System
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(b) Laptop Platform
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(c) Server Platform

Figure 4.2: EDP box plots. The points show outliers. The vertical scale is the logarithmic ratio log10(p/pmin) where p is the measurement
and pmin is the minimum of the measurements for that task, corresponding to the most EDP-friendly language.
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4.1.2 PL-RQ2. Which types of programming languages are, on average,
more EDP-efficient and inefficient for each of the platforms?

We provide an EDP ranking for the programming languages—based on all tasks average EDP
score—on our platforms. In addition, we discuss how EDP weights influence our results for
each platform.

Table 4.2: Programming Languages Average Weighted EDP Ranking

Rank Embedded Laptop Server

w = 1 w = 2 w = 3 w = 1,2,3 w = 1,2,3

1 C C C C C
2 C++ C++ C++ Go Go
3 Go Go Go C++ C++
4 Rust Rust Rust JavaScript C#
5 C# C# JavaScript Rust JavaScript
6 VB.NET JavaScript C# C# Rust
7 JavaScript VB.BET VB.NET VB.NET VB.NET
8 PHP PHP PHP PHP PHP
9 Ruby Ruby Ruby Ruby Python
10 Python Python Python Swift Ruby
11 Perl Perl Perl Python Swift
12 Java Java Java Perl Perl
13 Swift Swift Swift Java Java
14 R R R R R

Overall Ranking. Table 4.2 illustrates for each platform the ranking among the programming
languages’ average EDP and the influence of their weights, where this is applicable. The
shaded areas in the table depict the languages that their average EDP were influenced by
the weights. For all the selected platforms, compiled programming languages such as C,
C++, and Go are ranked on top by offering the best EDP implementations on average. Rust is
also ranked among the most efficient EDP programming languages for embedded systems,
but it drops for the laptop and server platforms. Swift is the only one, from the compiled
programming languages, that shows weak performance.

From the semi-compiled programming languages, the .NET framework’s implementa-
tions (C# and VB.NET) score better against the interpreted languages, but remain less ef-
ficient than the compiled languages. Java is ranked as the most inefficient among the semi-
compiled languages, while C# as the most efficient.

The interpreted programming languages are the ones offering on average lowest
performance, for all platforms, and appear at the bottom ranks in the Table 4.2. Among
them, JavaScript is the one being the most EDP-efficient while R is the most inefficient.

Weights impact on EDP. By using different weights in the EDP, we force programming lan-
guages with low execution time but higher energy consumption to result in lower EDP
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score compared to the ones having low energy consumption but higher run-time perfor-
mance. For instance, with w = 1 JavaScript achieves a logarithmic EDP score 3.1 for the
numerical-integration case, while C# achieves 1.6, which makes it more efficient compared
to JavaScript. However, when w = 2 or w = 3, JavaScript’s EDP changes to 3.3 and 3.5 while
for C# it changes to 3.1 and 4.3, respectively. This denotes that C# is consuming less energy
but is slower than JavaScript.

By looking at the results presented in Table 4.2, we see that only the embedded system’s
average EDP scores were affected by the changes in the weights. For instance, C#, VB.NET,
and JavaScript were influenced after raising the run-time performance to the second
and third power. Specifically, this denotes that JavaScript is much faster, on average,
compared to C# and VB.NET but more energy demanding—since before raising the run-time
performance C# and VB.NET had lower EDP.

Compiled languages aremore EDP-efficient compared to the interpreted ones.
Among the compiled, semi-compiled, and interpreted languages, the best EDP
is obtained by C, C#, and JavaScript, respectively. Raising the EDP performance
exponent to 2 or 3 affects the ranking of the embedded platform’s tasks.

4.1.3 PL-RQ3. How much does the EDP of each programming language
differ among the selected platforms?

We investigate how much a programming language’s average EDP differs across the mea-
surement platforms by using a non-parametric statistical test, the Wilcoxon’s signed-rank
test. To do that, we developed a script to carry out pairwise statistical analysis for the aver-
age EDP that a programming language scored for all the tasks, between two of the platforms
each time. Compared to PL-RQ1 and PL-RQ2, we used the raw values instead of logarithms,
as the test takes into account the rank of the differences and not their magnitude. Our null
hypothesis follows.

Table 4.3: Wilcoxon’s Pairwise Sum Ranking

Platforms C# C C++ Go JS Java Perl PHP Python R Ruby Rust Swift VB.NET

E–L a 0.09 0.00 0.01 0.08 0.02 0.56 0.62 0.12 0.15 0.54 0.10 0.05 0.00 0.19
E–S b 0.39 0.07 0.22 0.29 0.20 0.47 0.91 0.39 0.40 0.97 0.35 0.37 0.04 0.25
L–S c 0.19 0.27 0.14 0.43 0.11 0.31 0.47 0.33 0.52 0.36 0.24 0.28 0.07 0.42
a Embedded system and Laptop platform
b Embedded system and Server platform
c Laptop and Server platforms

Hypothesis H0: A programming language’s average EDP, does not have a statistically im-
portant difference between the measurement platforms.

LetL be a programming language, andP1,P2, andP3 (whereP1 ̸= P2 ̸= P3) the
selected platforms of our experiment. Also, we pick the average EDP for all the tasks and
we compare them in pairs: (P1,P2); (P1,P3); (P2,P3). Since each platform’s results
were used twice in a comparison (once for each other platform), we used the Bonferroni
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correction [19] to counteract the multiple comparison problem. Therefore if the test’s
p-value for the pair Px and Py (where x,y ∈ {1,2,3} and x ̸= y) satisfies the condition
p < (0.01/3), as there are 3 platforms pairs for each language, the difference between
the average of Px and Py is statistically significant for the L programming language.
Otherwise, if 0.01/3 ≤ p < 0.05/3, the statistical significance of the difference between
averages is weaker. If p ≥ 0.05/3, the null hypothesis cannot be rejected. Table 4.3
illustrates results after the pairwise statistical test of two platforms at a time for all the
programming languages. The collected results show that we can reject the null hypothe-
sis only for two cases and a thirdwithweaker statistical significance (highlighted in Table 4.3).

Embedded and Laptop. The results illustrate that there is significant difference between
the average EDP of the embedded and laptop platforms for C and Swift. In addition, the
results show a weaker evidence that the average EDP is different only for a single instance
among the programming languages, that is C++, for which the null hypothesis cannot be
rejected.

Embedded and Server. For the embedded and server platforms there is no strong statistical
evidence for the difference in average EDP.

Laptop and Server. Between these two platforms we found no strong significant difference
for any instance.

There is a significant difference between the average EDP, in some cases, of
the embedded and laptop platforms.

4.2 IPC Results

In this section, we discuss the collected results of the energy consumption and run-time
performance that the selected computer platforms achieved for each IPC technology imple-
mentation. We also answer our research questions, discuss the significance of our measure-
ments, and offer reasons behind our findings.

4.2.1 IPC-RQ1. Which IPC technology implementation offers the most
energy- and run-time performance-efficient results?

We first present the obtained results for the Intel and ARM computer platforms. Specifically,
we showwhich type of IPC technologies and programming language implementations are the
most energy- and run-time performance-efficient among our scenarios. Tables 4.4 and 4.5
illustrate the median values of the energy consumption (energy in Joules) and run-time per-
formance (time in seconds) for a particular programming language. Moreover, we compare
the corresponding implementations viz-a-viz the best implementation’s results (most effi-
cient case) in the form of their ratio. Also, Figures 4.3a and 4.3b present box plots regarding
the programming languages results for each IPC technology.
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Table 4.4: Energy and Run-time Performance Results for Intel Platforms

Nodes’ Collected Measurements Ratio comparison against the most efficient case

IPC Programming Energy (in joules) Time (in seconds) Total Energy Energy (in joules) Time (in seconds)
Names Languages Client Server Both Nodes Consumption Client Server Both Nodes

gRPC Go 99.0 105.8 28 204.8 3.5 3.9 9.3
Java 451.5 364.0 35 815.5 16.0 13.4 11.6
JavaScript 28.2 27.0 3 55.2 – – –
Python 606.7 588.7 16 1195.4 21.5 21.8 5.3
PHP 11543.9 1291.3 479 12835.1 409.3 47.8 159.6
Ruby 139.4 61.6 39 201.0 4.9 2.2 13.0
C# 65.6 105.2 55 170.8 2.3 3.8 18.3

RPC Go 84.8 70.4 16 45.2 2.3 2.1 1.6
Java 5224.5 2715.5 855 7940.0 144.3 84.0 85.5
JavaScript 36.2 32.3 10 26.5 – – –
Python 319.5 347.0 73 666.5 8.8 10.7 7.3
PHP 930.5 1214.6 67 25.7 10.2 37.6 6.7
Ruby 458.2 513.5 43 971.7 12.6 15.8 4.3
C# 399.9 364.0 27 763.9 11.0 11.2 2.7

REST Go 94.1 79.0 19 260.3 1.0 2.5 1.9
Java 687.0 617.8 42 1304.8 7.7 19.6 4.2
JavaScript 88.1 31.4 10 109.5 – – –
Python 637.0 370.0 78 1007.0 7.2 11.7 7.8
PHP 7003.0 20574.5 628 79.4 90.0 65.2 62.8
Ruby 1988.2 6191.2 304 8179.4 22.5 197.1 30.4
C# 1206.6 789.4 44 1996.0 13.6 25.1 4.4

4.2.1.1 Intel platforms

Comparison among IPC technologies. Table 4.4 illustrates the obtained results of the Intel
platforms. We can see that, for both server and client, the gRPC offers the lowest energy con-
sumption and execution time for all the IPC technology implementations apart from those of
Go and PHP. For Go’s implementation, gRPC has the highest energy consumption and low-
est run-time performance compared to REST and RPC which are making use of the built-in
net RPC and HTTP libraries. The results also present that RPC is the IPC technology that
has the next best results, regarding energy consumption and run-time performance, for all
the implementations except from Java, while it offers the best results for Go. Also, we can
see that REST implementations contribute to the highest energy consumption and lowest
run-time performance among the implementations.

Comparison among programming languages. The results of Table 4.4 show that
JavaScript is the programming language that exhibits the best results in all cases. In addition,
we can see that Go outputs the secondmost energy- and run-time performance-efficient re-
sults, while C# is following, and last we observe that Java, Python, Ruby, and PHP offer the
lowest performance.

4.2.1.2 ARM platforms

Comparison among IPC technologies. Table 4.5 depicts the IPC results of the ARM plat-
forms. Likewise to Intel platforms results, the gRPC again contributes to the lowest energy
consumption and execution time, formost cases, among the selected IPC technologies in the
context of ARM platforms for the server and client instances. In contrast, Go, Java, and PHP
implementations are having the most inefficient results while executing the gRPC task. For
RPC scenarios, we observe that our implementations have the next best results after those
of Java and C#. Among the IPC technologies, REST resulted in the least energy- and run-time
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Table 4.5: Energy and Run-time Performance Results for ARM Platforms

Nodes’ Collected Measurements Ratio comparison against the most efficient case

IPC Programming Energy (in joules) Time (in seconds) Total Energy Energy (in joules) Time (in seconds)
Names Languages Client Server Both Nodes Consumption Client Server Both Nodes

gRPC Go 10.8 6.9 10 17.7 4.9 5.3 3.3
Java 83.5 75.6 71 159.1 45.2 58.1 23.6
JavaScript 2.2 1.3 3 3.5 – – –
Python 11.7 16.5 18 28.2 5.3 12.6 6.0
PHP 348.7 88.7 331 437.4 201.2 68.2 110.3
Ruby 8.3 8.3 12 16.6 3.7 6.3 4.0
C# – – – – – – –

RPC Go 5.2 6.6 7 11.8 – – –
Java 73.3 40.6 258 113.9 14.0 6.1 36.8
JavaScript 20.9 20.5 22 41.4 4.0 3.1 3.1
Python 31.0 36.5 52 67.5 5.9 5.5 7.4
PHP 7.7 8.8 28 16.9 1.4 1.3 4.0
Ruby 33.0 35.0 42 68.0 6.1 5.3 6.0
C# 219.3 290.7 53 510.0 42.1 44.0 7.5

REST Go 4.1 3.2 8 7.3 – – –
Java 33.9 43.5 22 77.4 8.2 13.5 2.7
JavaScript 18.3 18.3 22 36.6 4.4 5.7 2.7
Python 60.4 35.0 75 95.4 14.7 10.9 9.3
PHP 175.8 360.1 153 535.9 42.8 112.5 19.1
Ruby 196.0 1094.0 679 1290.0 47.8 341.8 84.8
C# 45.3 96.5 68 108.5 11.0 30.1 8.5

performance-efficient results for the ARM platforms.
Comparison among programming languages. JavaScript also offers the best results for

the ARM platforms when it comes to the gRPC task. However, in contrast to the Intel plat-
forms, Go implementations resulted in the most efficient results in terms of energy con-
sumption and run-time performance, while JavaScript is the runner-up for RPC and REST
tasks. Compared to the Intel platforms, the presented results for the ARM systems do not
depict a clear winner among the remaining language implementations.

4.2.1.3 Range of results

Figures 4.3a and 4.3b illustrate the box plots of the obtained median energy consumption of
each implementation with a confidence interval of 95%. The points located in our box plots,
that are above the maximum values measurements are highly energy-inefficient implemen-
tations.

In the case of Intel platforms (see Figure 4.3a), we notice that most of the implementa-
tions diverge significantly for most of the case, for both client and server instances. We can
also observe that gRPC implementations have small differences in their energy consump-
tion compare to the Rest and RPC implementations. This fact denotes that it is important to
select the proper language implementation and IPC protocol in order to reduce the energy
consumption for Intel platforms.

Similarly to Intel platforms, for the ARM systems, we see high divergences for some
of the implementations’ energy consumption (see Figure 4.3b). Such a fact highlights
the necessity of proper selection, of IPC protocol and language implementation in the
context of embedded systems and battery-restricted devices. Likewise to Intel platforms,
gRPC implementations have a better performance and low divergence among them. How-
ever, for the REST scenario, Ruby had themost inefficient server and client implementations.
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(a) Intel platforms’ client and server results

Cl
ie

nt
-g

RP
C

Cl
ie

nt
-R

PC

Cl
ie

nt
-R

es
t

Se
rv

er
-g

RP
C

Se
rv

er
-R

PC

Se
rv

er
-R

es
t

0

50

100

150

200

250

300

350

En
er

gy
 c

on
su

m
pt

io
n 

(in
 Jo

ul
es

)
(b) ARM platforms’ client and server results

Figure 4.3: Intel and ARM computer platforms results

JavaScript and Go are the programming languages offering the most energy-
and run-time performance-efficient library implementations for the Intel and
ARM platforms. In addition, for almost all programming language implemen-
tations, we found that gRPC is the IPC technology having the most efficient
results.

4.2.2 IPC-RQ2. What are the reasons that make certain IPC technologies
more energy and run-time performance-efficient?

To answer IPC-RQ2, we execute thewhole experiment onemore time to retrieve and analyse
system calls from the Intel and ARM platforms. Likewise, Aggarwal et al. [7, 73] investigated
how the energy consumption of applications is changing according to the number of their
system calls. They showed that when the number of system calls between two applications
diverges significantly, it is more likely that the application’s energy consumption will differ
too. However, what we do here is that we examine the system call traces produced by our
IPC technology implementations qualitatively andwe try to delineate the reasons behind our
results. Therefore, we first analyse the obtained system call traces (for the client and server)
and then we try to interpret and discuss our findings.

To collect system call traces, we utilise the strace command-line tool and we collect data
using the flags -c (provides a summary-like output) and -f (retrieves child process traces).
Due to the large volume of results, we did not include the collected system call traces in this
study; however, they are publicly available in our GitHub repository.1

1https://github.com/stefanos1316/Rest_and_RPC_research/arm/syscalls

https://github.com/stefanos1316/Rest_and_RPC_research/arm/syscalls
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(a) Intel platforms’ system calls impact

(b) ARM platforms’ system calls impact

Figure 4.4: Computer Platforms System Calls
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4.2.2.1 Platforms’ System Calls

On the ARM and Intel platforms’ system calls, we identify a large number of wait-like system
calls such as futex, waitid, and so on. By investigating the results, we observe that Go is
using the futex, waitid, and epoll_wait system calls extensively; this is not happening for
the JavaScript implementations. By reading the official documentation of the IPC technol-
ogy implementations we found out that Go, for all the IPC technologies, is using channels;2
a synchronous method to serialise main memory access and increase thread-safety [112].
Therefore, it forces the client to wait for an answer from the server before invoking the next
remote procedure. This increases execution time and thereby adds to the energy footprint
through the system’s fixed energy consumption cost.

Likewise, Python implementation system calls are spread among socket, connect, close,
sendto, recvfrom, fcntl, and stat for the REST and RPC technologies. Although Python is
not using broadly wait-based system calls, it still has the implementations with the lowest
performance for both energy usage and execution time. In the case of gRPC, Python supports
both synchronous and asynchronousmethods to interact with the client’s and server’s stubs.
However, in the example, a synchronousmethod is used and, thus, the futex system call takes
up most of the implementation’s execution time.

We observe a similar behavior, with the above, for the C#, Java, Ruby, and PHP imple-
mentations. JavaScript, on the other hand, due to its asynchronous nature spendsmost of its
execution timeon system calls such aswritev, mmap, munmap, read, brk, socket, connect,
and less than 20% of its execution time on epoll_ctl.

4.2.2.2 Identifying the Facts

We execute our experiment again by using the -e flag to sanitise our traces from the wait-
like system calls (e.g., futex, wait4). We do that since these system calls indicate that an
implementation is not using any computing resource—since it is in a sleeping state—and to
diagnose which system calls might impact its energy consumption and execution time. Ad-
ditionally, we remove traces that are related to the compilation since they do not offer an
actual execution of the tasks. Figures 4.4a and 4.4b, illustrate the time that each of the im-
plementations spends in kernel space (sys time) against the real time for the associated com-
puter platform and IPC protocol. TheY -axis supplies information regarding the total median
time (of 50 executions) that IPC implementations spent on system calls during their whole
execution, while the x-axis shows the relevant programming language implementations.

After obtaining our traces, we compared themost and least efficient IPC implementation
system calls across each of the programming languages according to the results of subsec-
tion 4.2.1. Also, we performed an intra-language (instead of inter-language) comparison of
the IPC implementations to be just with languages supporting only asynchronous or syn-
chronous function calls for the investigated tasks. We did that separately for the program-
ming languages affected heavily from the system calls such as C#, Go, and PHP.Moreover, we
analysed JavaScript’s system calls because JavaScript offers the most energy- and run-time
performance-efficient implementations.

For C#, the results for both platforms suggest that the server instances are way more af-
fected by the system calls against the clients. For the RPC implementations, the sched_yield

2https://gobyexample.com/channels

https://gobyexample.com/channels
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system calls occupy amajor portion of time causing a large number of context switcheswhich
degrades the implementations’ performance. This might also be the reason that places C#’s
RPC among the implementations with the poorest energy and run-time performance, espe-
cially for the ARM platforms (see Table 4.5).

In contrast to C#, Go’s client implementations are getting affected more from the system
calls, close to 20% of their total execution time. Also, Go’s RPC is the most energy- and
run-time performance-efficient implementation, while gRPC gives the weakest results. By
examining their system call traces, we found that both of them are using mostly the same
system calls e.g.,write, read, and sched_yield. However, for the Intel platforms, whatmakes
them different is that RPC makes, in total, at least twice as many system calls against gRPC.
Therefore, by taking into account the work of Aggarwal et al. [7] this can explain the reasons
why RPC’s implementation is more energy-efficient than gRPC’s. For the ARM platforms, the
same is not happening since the number of their system calls are similar.

PHP’s RPC—which has the best energy and run-time performance compared to PHP’s
Rest and gRPC implementations for the client instances—is mainly using system calls such
as connect, close, send, recv, and socket, while the client-side gRPC is extensively using
the openat and mmap2 to map data on virtual memory. For the server instances for both
platforms, REST implementation for PHP suffers from a great number of system calls.

JavaScript, which has gRPC as the most energy- and performance-efficient implemen-
tations, makes broad use of writev system calls that write data into multiple buffers.
Also, JavaScript’s gRPC is using mostly the read, write, writev, and clock_gettime sys-
tem calls, while its REST implementation (the most efficient one) utilises considerably the
socket, connect, and close system calls for the client and accept and shutdown for the server.

Our analysis shows the frugal opening, connecting, closing, accepting, and
shutting down connections can impact the energy consumption and run-time
performance of the IPC technologies. Moreover, an extensive number of con-
text switches can severe implementations’ performance. Besides, the usage of
writev system call appears in the most efficient implementations.

4.2.3 IPC-RQ3. Is the energy consumption of the IPC technologies propor-
tional to their run-time performance or resource usage?

In IPC-RQ3, we aim to identify if the energy consumption of different IPC implementations is
proportional to their (1) run-time performance and (2) resource usage. To this line, a similar
research question to ours was answered by Pereira et al. [125] where they compared the en-
ergy consumption, run-time performance, and memory usage of 27 different programming
languages and showed that energy consumption is not proportional to the memory usage,
while in some cases it is proportional to the execution time. We perform a similar experi-
ment in the context of IPC technologies and we examine resource usage as described below.
To answer IPC-RQ3, we break it down into two sub-questions and we answer separately as
follows.
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4.2.3.1 Energy consumption and run-time performance

Initially, we collected the median values of the energy consumption and run-time perfor-
mance of each implementation from our experiment as shown in Tables 4.4 and 4.5 and
we rendered scatter plots. This offers an overall picture regarding the relationship of our
data for each of our platforms. In Figures 4.5a and 4.5b the X -axis presents the run-time
performance (in seconds) of the IPC language implementations, while theY -axis depicts the
median energy consumption (in Joules), for the server and client instances.

The collected measurements of Figures 4.5a and 4.5b do not follow a normal distribu-
tion. have a linear andmonotonic relationship among them. Therefore, after performing the
Spearman’s correlation test, we obtained 0.56 and 0.88 statistical measurements of strength
for the Intel and ARM platforms, respectively. These results suggest that there is a moder-
ate and very strong positive monotonic relationship between the energy consumption and
run-time performance of the Intel and ARM platforms, respectively.
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Figure 4.5: The first figure (left) illustrates the energy consumption and the run-time perfor-
mance of the Intel platform. The second figure (right) presents the energy consumption and
the run-time perfomrance of the ARM platform.

By performing a correlation test, we found that there is a positive moderate
and very strong monotonic correlation between the energy consumption and
run-time performance of the Intel and ARM platforms, respectively.

4.2.3.2 Energy consumption and resource usage

In this section, we aim to observe whether the resource usage of the different implementa-
tions is proportional to energy consumption. To this end, we used the Linux /usr/bin/time
-v command (version 1.9), which offers information regarding the implementation’s resource
use, such as context switching, page faults, andmainmemory usage. In this way, we can have
a deeper understanding of the way each implementation is allocating memory and different
operations that are causing peculiar system calls.

To see the overall view of our data, we prepared a number of scatter plots. The Figures of
this section illustrate the Maximum Resident Set Size (MRSS), the Minor Page Faults (MPF),
and the Voluntary Context Switches (VCS) for the client and server, respectively. We show



74 / 130 4.2. IPC RESULTS

0 100 200 300 400 500
Maximum Resident Set Size (in MBs)

0

1000

2000

3000

4000

5000

En
er

gy
 C

on
su

m
pt

io
n 

(in
 Jo

ul
es

)

(a) Intel Energy-MRSS

0 20 40 60 80 100 120
Maximum Resident Set Size (in MBs)

0

200

400

600

800

1000

(b) ARM Energy-MRSS

Figure 4.6: The first figure (left) illustrates the energy consumption and the maximum res-
ident set size results of the Intel platform. The second figure (right) presents the energy
consumption and the maximum resident set size results of the ARM platform.
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Figure 4.7: The figures illustrate the energy consumption and the major page faults results
of the Intel (left) and the ARM (right) platforms.
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Figure 4.8: The first figure (left) illustrates the energy consumption and themajor page faults
results of the Intel platform, while the second figure (right) presents the energy consumption
and the major page faults measurements of the ARM platform.
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the peak main memory usage for our implementations’ processes by using the MRSS that
is showing the portion of memory occupied by a process in the main memory. Additionally,
we select the MPF since it can show the number of cases when our implementations are
trying to access particularmemory pages that are not currentlymapped in the virtual address
space. Also, we ignored the Major Page Faults because only a few instances occurred in
our results. Finally, we use the VCS to observe the number of times an implementation’s
processes were context-switched while waiting for resources that were unavailable at that
time. Figures 4.6a and 4.6b illustrate the pattern between the MRSS (X -axis) and energy
consumption (Y -axis) for the Intel and ARMplatforms. Likewise, Figures 4.7a and 4.7b depict
the pattern between theMPF (X -axis) and energy consumption (Y -axis) for the Intel andARM
platforms, respectively. Finally, Figures 4.8a and 4.8b present the pattern between the VCS
(X -axis) and energy consumption (Y -axis) for the Intel and ARM platforms, respectively.

To identify the relationship between energy consumption and resource usage, we used
Spearman’s correlation test because our data do not follow a normal distribution. For
the energy consumption and MRSS, we obtained the results of −0.25 and −0.04 which
indicate a very weak and weak negative monotonic correlation between the corresponding
measurements for the Intel and ARM platforms, respectively. Regarding the energy con-
sumption and MPF, we received the values of −0.04 and 0 for the Intel and ARM platforms
which indicate a weak negative and no correlation for our measurements, respectively.
About the energy consumption and VCS of the Intel and ARM platforms, we got the values
of 0.26 and 0.21, respectively, which show a positive weak monotonic correlation between
the associated measurements.

We found a weak and very weak monotonic relationship between our energy
measurements and resource usage. Therefore, none of the collected resource
usage measurements can be used to justify the energy consumption results in
terms of IPC technologies.

4.3 Safeguards Results Analysis

We analyze the results produced by our experiments with respect to the research questions
we set in section 2.1.1. We observe the behavior of the different safeguards, highlighting
particular findings and pointing out ways to reduce energy consumption.

4.3.1 SG-RQ1. What are the energy and run-time performance implica-
tions of the security mechanisms on a computer system?

First, we examine the results related to the security mechanisms that protect against the at-
tacks exploiting CPU-related vulnerabilities. Then, we describe the potential impact of using
HTTPS, and discuss our findings on memory zeroing. Finally, we observe the implications
associated with the GCC safeguards.
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4.3.1.1 CPU Vulnerability Patches

We employed several benchmarks to measure the energy consumption and overhead of
CPU-related vulnerability patches. In particular, we evaluated 128 benchmarks, consisting of
310 tasks. We discuss the obtained results in this section for each category in the following
order: (1) video and audio encoding, (2) code compilation, (3) file compression, (4) database
suites, (5) compute-intensive, (6) disk suites, (7) kernel operations, (8) machine learning, (9)
memory suites, (10) network suites, (11) imaging benchmarks, (12) renderers, and (13) desk-
top graphics. Regarding the computer-intensive benchmark category, we present the tasks
with the highest performance degradation because we had too many results. Nevertheless,
all measurements are publicly available in our GitHub repository. 3

The highlighted rows in each table of this section, denote that the associated task’s
energy consumption is more than 1% higher when all the CPU vulnerability patches are
disabled (AllOff) against the baseline scenario where all the CPU vulnerability patches
are enabled (Stock). Specifically, the rows highlighted with orange color indicate an
energy reduction between 1% and 3.3%. Additionally, the rows with yellow color denote
a reduction between 3.4% and 6.6%. Also, the rows with blue color show an energy
reduction between 6.7% and 9.9%. Finally, the green color illustrates tasks where we
identified more than 10% of energy savings after disabling all CPU vulnerability patches.
Due to the large amount of results in this particular section, we focus on the energy and
run-time performance differences between the Stock and AllOff scenarios.

Table 4.6: Video and Audio Encoding/Decoding Energy (in Joules) and Delay (in seconds)
Implications

Stock Meltdown Spectre MDS AllOff Difference (%)

Tasks Energy Time Energy Time Energy Time Energy Time Energy Time Energy Time

dav1d_chimera 11522 267 11514 267 11473 266 11461 267 11478 267 0.7 0
dav1d_nature 2941 53 2935 53 2924 52 2918 52 2927 52 0.7 1.8
encode-mp3 666 28 667 28 665 28 668 28 661 28 0.7 0
encode-flac 424 20 420 20 420 20 419 20 418 20 1.4 0
ffmpeg 293 6 293 5 294 6 291 5 292 5 0.1 16.6
svt-av1 2192 37 2174 37 2151 36 2163 37 2166 37 1.2 0
svt-hevc 1584 27 1587 27 1570 27 1578 27 1576 27 0.5 0
svt-vp9 4260 77 4271 77 4254 76 4253 77 4238 76 0.5 1.2
vpxenc 1208 25 1201 25 1194 25 1196 25 1195 25 1.1 0
x264 733 13 732 13 730 13 734 13 732 13 0.1 0
x265 1017 17 1017 18 1010 17 1018 18 1016 17 0.1 0

Video and Audio Encoding. Table 4.6 illustrates the results of the audio and video encod-
ing/decoding benchmark suites. Our results suggest that the CPU vulnerability patches
have a small impact on the majority of the corresponding tasks’ energy and run-time
performance. Only the tasks of encode-flac, svt-av1, and vpxenc gained energy savings of
1.2% on average, while their run-time performance remained unaffected.

3https://github.com/stefanos1316/resultsForEECSE20.git

https://github.com/stefanos1316/resultsForEECSE20.git


77 / 130 4.3. SAFEGUARDS RESULTS ANALYSIS

Table 4.7: Code Compilation Energy (in Joules) and Delay (in seconds) Implications

Stock Meltdown Spectre MDS AllOff Difference (%)

Tasks Energy Time Energy Time Energy Time Energy Time Energy Time Energy Time

build2 10419 196 10352 197 10329 197 10282 197 10247 195 1.6 0.5
gcc 17039 359 16830 353 16898 355 16796 350 16539 345 3 3.9
gdb 5791 134 5695 131 5729 132 5666 130 5587 128 3.5 4.4
kernel 81490 1555 73093 1382 73330 1393 72572 1371 72103 1374 11.5 11.6
llvm 45784 864 45569 861 45488 862 45302 858 45052 851 1.5 1.5
php 4403 99 4380 98 4366 98 4360 98 4318 97 1.9 2

Code Compilation: In Table 4.7, we illustrate the energy-delay implications of tasks associ-
ated with code compilation. In this category, we obtained energy and run-time performance
measurements of the corresponding tasks while they were compiling. Our results show
that all CPU vulnerability patches affect the energy consumption and run-time performance
compilation of the corresponding tasks, but not more than 5% for almost all cases. Notably,
the Linux kernel version 5.3 compilation suffers more than any other test case for the
corresponding category (see kernel in Table 4.7). In particular, the CPU vulnerability patches
increased its energy consumption by 11.5% and execution time by 11.6%.

Table 4.8: File Compression Energy (in Joules) and Delay (in seconds) Implications

Stock Meltdown Spectre MDS AllOff Difference (%)

Tasks Energy Time Energy Time Energy Time Energy Time Energy Time Energy Time

bzip2 375 17 377 17 375 17 373 17 371 17 1.1 0
lz_brotli 12516 573 12551 572 12505 573 12424 573 12476 572 0.3 0.1
lz_deflate 5820 262 5850 262 5810 262 5790 262 5808 261 0.2 0.4
lz_xz 13101 634 13028 633 13014 633 12864 633 12936 633 1.2 0.2
lz_zstd 13842 625 13721 625 13698 624 13680 623 13685 624 1.1 0.3
p7zip 1756 37 1749 37 1745 37 1748 37 1733 37 1.3 0
xz 1628 80 1617 80 1621 81 1612 80 1604 80 1.4 0
zstd 389 10 388 10 388 10 388 10 385 10 0.8 0

File Compression. Focusing on the results seen in Table 4.8, we observe that CPU vulnera-
bility patches impact neither the energy consumption nor the run-time performance of file
compression algorithms (affected by less than 2%).

Database Suites: CPU vulnerability patches seem to affect database suites the most.
Table 4.9 illustrates the corresponding results. We observe that in-memory database
systems such as Redis and Memcached 4 are the ones experiencing great energy and delay

4Note thatmcperf acts as the client ofMemcached.
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Table 4.9: Database Systems Energy (in Joules) and Delay (in seconds) Implications

Stock Meltdown Spectre MDS AllOff Difference (%)

Tasks Energy Time Energy Time Energy Time Energy Time Energy Time Energy Time

cassandra_read 127 15 125 15 124 15 125 15 123 15 3.6 0
cassandra_write 115 13 112 13 112 13 111 13 111 13 3.6 0
mcperf_add 804 30 760 28 665 25 777 29 590 21 26.6 30
mcperf_append 752 29 710 27 632 24 712 27 555 20 26 31
mcperf_delete 550 18 521 17 441 14 508 17 387 12 29.6 33.3
mcperf_get 546 18 503 16 434 14 500 17 386 12 29.2 33.3
mcperf_prepend 748 29 710 27 631 23 711 27 555 20 25.8 31.1
mcperf_replace 747 30 710 28 630 25 720 29 553 20 25.8 31
mcperf_set 802 30 762 28 666 25 766 29 594 21 25.9 30
pymongo 883 38 890 39 866 37 870 38 867 38 1.8 0
redis_get 1972 66 1631 53 1761 58 1685 55 1166 36 40.8 45.4
redis_lpop 1985 65 1629 52 1756 58 1672 54 1167 36 41.1 45.4
redis_lpush 1988 66 1640 53 1763 58 1665 54 1166 36 41.3 45.4
redis_sadd 1981 66 1642 52 1764 58 1680 54 1169 36 40.9 45.5
redis_set 1972 66 1622 53 1761 58 1680 54 1167 36 40.8 44.6
rocksdb_fillrand 1281 31 1271 31 1243 31 1250 31 1212 31 5.3 0
rocksdb_fillseq 976 21 969 21 951 21 960 21 936 20 4.1 4.7
sqlitebench 944 134 962 136 878 125 930 134 908 130 3.8 3

performance degradation. Specifically, the decrease in energy consumption ofmcperf tasks
ranges from 25.8% to 29.6%, while its execution time is reduced from 30% to 33.3%. In
the case of the Redis benchmark tasks, we observed energy savings from 40.8% to 41.3%
and increased run-time performance from 44.6% to 45.4%. Compared to the in-memory
database systems, rocksdb, sqlite3, and cassandra experienced energy and run-time
performance gains from 3.4% to 5.3%, while mongodb’s (pymongo) energy consumption
was only reduced by 1.8%.

Compute-Intensive: In this category, we first focus on the “green” highlighted cases and then
discuss to the rest as we progress.

The Apacheweb server experienced an energy reduction of 18.6% and an increased run-
time performance of 23.8% when we disabled the patches. Likewise, Nginx server’s energy
consumption and execution time decreased by 20.2% and 22.5%, respectively. Similarly to
the above cases, the node-express-loadtest (a NodeJS web server written in the Express
framework) achieved energy and run-time performance gains equal to 9.1% and 10%, re-
spectively.

The brl-cad benchmark evaluates the performance of various computer system com-
ponents such as CPU, memory, cache coherency, kernel operations, and compiler. After
disabling the CPU vulnerability patches, the brl-cad’s energy and run-time performance in-
creased by 6.4% and 7%, respectively. In the case of bork, which involves file encryption, the
energy and the run-time performance were affected by 8.3% and 6.6%, respectively. Mean-
while, other benchmarks such as openssl, john-the-ripper, botan, and blake2s had less than a
percentage of performance improvement after disabling the CPU vulnerability patches. Glibc
tasks such as atanh, sin, sincos, sinh, log2, cos, sqrt, tanh indicated energy reductions ranging
from 1.8% to 6%. Notably, their execution time remained unaffected. Finally, renaissance (a
benchmark suite for testing JVM’s components, such as the JIT compiler and garbage collec-
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Table 4.10: Compute-Intensive Suites Energy (in Joules) and Delay (in seconds) Implications

Stock Meltdown Spectre MDS AllOff Difference (%)

Tasks Energy Time Energy Time Energy Time Energy Time Energy Time Energy Time

apache 1507 42 1416 39 1370 38 1386 38 1224 32 18.7 23.8
blogbench_read 2435 63 2432 63 2403 63 2431 63 2385 63 2 1.5
blogbench_write 2326 52 2314 52 2285 52 2300 52 2269 52 2.4 0
brl-cad 44792 707 40782 641 40465 639 41321 664 41889 657 6.4 7
bork 256 15 248 15 267 17 251 15 234 14 8.3 6.6
byte_dhry2 1734 122 1730 121 1709 121 1728 121 1715 121 1.1 0.8
byte_float 1541 122 1530 121 1518 121 1521 121 1515 121 1.7 0
byte_int 1536 122 1531 121 1514 121 1525 121 1515 121 1.4 0
byte_register 1543 122 1531 121 1514 121 1536 122 1517 121 1.6 0
cloverleaf 3519 93 3432 90 3403 90 3424 90 3414 90 2.9 3.2
crafty 559 24 556 24 550 24 552 24 550 24 1.5 0
dacapo_eclipse 4168 109 4131 108 4091 108 4119 108 4093 107 1.7 1.8
dacapo_h2 1386 41 1383 41 1370 41 1367 41 1348 40 2.7 2.4
dacapo_tradesoap 516 14 511 13 518 14 512 12 506 13 1.9 7.1
fhourstones 2488 117 2484 117 2461 117 2476 117 2437 117 2 0
glibc_ffs 221 10 227 10 220 10 225 10 227 10 2.9 0
glibc_log2 227 10 230 10 225 10 218 10 217 10 4.3 0
glibc_cos 475 21 476 21 471 21 467 21 460 21 3.1 0
glibc_sin 480 21 482 21 474 21 470 21 464 21 3.3 0
glibc_sincos 447 20 448 20 442 20 435 20 439 20 1.8 0
glibc_sinh 242 10 246 10 241 10 232 10 231 10 4.5 0
glibc_sqrt 232 10 240 10 230 10 237 10 242 10 3.9 0
glibc_tanh 235 10 235 10 232 10 223 10 221 10 4.2 0
gmpbench 9235 419 9208 418 9169 418 9203 418 9077 418 1.7 0.2
himeno 1715 73 1716 72 1692 73 1693 72 1672 72 2.4 1.3
nginx 936 31 926 30 848 28 870 28 747 24 20.2 22.5
node-loadtest 343 10 332 10 332 10 330 10 311 9 10 10
octave-bench 277 10 274 10 272 10 267 10 266 9 4.1 10
phpbench 365 15 367 15 362 15 359 15 361 15 1 0
pyperf_2to3 1485 61 1453 60 1467 60 1438 60 1436 60 3.2 1.6
pyperf_float 496 20 490 20 494 20 493 20 488 20 1.7 0
pyperf_go 1085 44 1075 44 1074 44 1070 44 1071 44 1.2 0
pyperf_pathlib 776 32 756 32 757 32 744 32 722 32 6.9 0
pyperf_pickle 704 28 701 28 698 28 698 28 697 28 1.1 0
pyperf_startup 1938 84 1902 82 1923 83 1894 82 1850 80 4.5 4.7
renais_shootout 596 19 614 19 598 19 585 18 565 18 5.3 5.2
renais_reactors 842 22 834 22 853 22 823 21 795 20 5.5 9.1
swet 296 14 294 14 296 14 296 14 289 14 2.1 0
sudokut 500 20 497 20 497 20 502 20 495 20 1 0
tiobench_write 2620 346 2587 342 2488 334 2547 334 2518 335 3.8 3.1
tiobench_read 1678 202 1638 197 1673 206 1686 203 1643 200 2 1

The renais_shootout and renais_reactors are the tasks of renaissance shoootout and reactors,
respectively, while the node-loadtest is the task of node-express-loadtest
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tor) had energy and delay implications on certain operations, while others remained intact.
Specifically, the reactors task (a set of message passing workloads encoded in the Reactors
framework [139]) experienced 5.5% energy and 9.1% execution time reduction, while the db
shootout task (a parallel shootout test on a Java in-memory database [139]) had 5.3% energy
and 5.2% execution time reduction.

Several of the compute-intensive tasks were affected by less than 5%. Specifically,
blogbench, a benchmark that uses multiple threads to perform read and write file-system
operations, had its energy consumption and execution time reduced by 2.2% and 1.5% on
average. Byte tasks (used for stressing multi-core systems through synthetic workloads)
showed an energy reduction of 1.4%, on average, while their run-time performance was
affected by less than a percentage. DaCapo, a benchmark suite with a variety of applications
to stress computer systems processor and main memory, had 1% to 2.7% energy and 1.8%
to 7.1% execution time reductions, respectively. Cloverleaf, a benchmark that stresses
the CPU by solving Euler equations on a Cartesian grid, experienced 2.9% energy and
3.2% run-time performance gains. Crafty, a chess program that tests multi-core processor
performance, had energy savings of 1.5%, while its run-time performance remained the
same. Fhourstone is another CPU-intensive application that had 2% energy reduction,
while its run-time performance remained unaffected. Pyperformance consists of various
compute-intensive tasks such as math, regex, serialise, template libraries, and so on. By
turning off the vulnerability patches, pyperformance tasks had energy savings ranging from
1% to 7% and an increased run-time performance from 1.6% to 9.3%. Octave-bench, a
benchmark for numeric computations, had reduced energy consumption and execution
time of 4.1% and 10%, respectively. Gmpbench aims to assess a processor’s performance
through integer multiplications; by dispensing the CPU vulnerability patches, it achieved
energy savings of 1.7%, while its run-time performance did not change at all. Himeno
performs a large number of computations to measure CPU performance; our results suggest
that the patches can affect its energy and run-time performance up to 2.5% and 1.3%,
respectively. Swet evaluates a system’s performance through several math, logic, bitwise,
and branch tests. Such operations had their energy performance degradation by 2.2%,
while their run-time performance remained intact.

Disk Suites: We examined four benchmarks in total, that are composed of 13 tasks with
different configurations that can stress a filesystem (see Tables 4.11). Our results suggest
that CPU vulnerability patches impact filesystem operations. Specifically, after disabling
all CPU vulnerability patches, iozone tasks’ energy consumption was reduced from 6.4%
to 9.1%. Also, their run-time performance was increased from 3.5% to 4.3%. Aio-stress,
a benchmark to test asynchronous I/O operations on files, indicated a reduced energy
consumption and execution time, i.e., from 6.4% and 3.2% in both cases. Likewise, dbench
showed energy savings, (around 3%), while its execution time remained intact. Similarly,
postmark’s energy consumption was reduced by 2.2%, while its run-time performance
remained unaffected. For the fs-mark benchmark suite, we observed less than 2% of energy
and run-time performance gains.

Kernel Operations: By executing benchmarks that stress various Kernel operations, we ob-
served major energy and run-time performance gains as summarised in Table 4.12. Overall,
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Table 4.11: Disk Suites Energy (in Joules) and Delay (in seconds) Implications

Stock Meltdown Spectre MDS AllOff Difference (%)

Tasks Energy Time Energy Time Energy Time Energy Time Energy Time Energy Time

aio-stress 715 91 670 86 668 86 668 86 668 88 6.4 3.2
dbench_1 4921 720 4904 720 4898 720 4889 720 4908 720 0.2 0
dbench_6 5072 720 4982 720 5061 720 4986 720 5030 720 0.8 0
dbench_12 5266 720 5279 720 5292 720 5256 720 5206 720 1.1 0
dbench_48 5680 720 5695 720 5698 720 5659 720 5609 720 1.2 0
dbench_128 5919 720 5909 720 5933 720 5859 720 5821 720 1.6 0
dbench_256 6146 721 6136 721 6122 720 6069 721 6014 721 2.1 0
fs-mark_1K 336 47 346 48 339 47 331 47 333 47 0.8 0
fs-mark_4K 1127 155 1111 154 1109 153 1106 153 1111 154 1.4 0.6
fs-mark_5K 2985 398 2954 393 2923 387 2965 396 2957 395 1 0.7
iozone_2096 789 93 753 92 771 92 746 91 717 89 9 4.3
iozone_4096 1939 232 1894 232 1909 231 1888 231 1796 223 7.3 3.8
iozone_8126 5798 678 5733 679 5709 674 5624 670 5426 654 6.4 3.5
postmark 912 109 910 109 907 108 925 112 892 108 2.1 0.9

Table 4.12: Kernel Operations Energy (in Joules) and Delay (in seconds) Implications

Stock Meltdown Spectre MDS AllOff Difference (%)

Tasks Energy Time Energy Time Energy Time Energy Time Energy Time Energy Time

ctx_clock 6192 318 3523 174 6178 318 3165 169 1121 56 81.8 82.3
osb_files 659 29 631 27 593 26 622 27 542 23 17.6 20.6
osb_processes 887 22 852 20 889 22 870 21 803 19 9.4 13.6
osb_threads 588 19 549 17 574 19 550 18 494 15 15.9 21
osb_mem_alloc 514 23 503 22 508 23 501 22 480 21 6.6 8.6
osb_programs 584 11 553 10 576 11 546 10 511 9 12.4 18.1
schbench_2 868 30 868 30 860 30 867 30 866 30 0.2 0
schbench_4 1099 30 1099 30 1099 30 1099 30 1099 30 0 0
schbench_8 1113 30 1113 30 1114 30 1113 30 1112 30 0.1 0
stress-ng_fork 1232 24 1185 23 1222 24 1170 22 1108 21 10 12.5
stress-ng_matrix 799 14 759 13 775 13 786 14 752 13 5.9 7.1
stress-ng_msg 1024 22 862 18 988 21 636 13 519 10 49.2 54.5
stress-ng_sem 911 20 919 21 888 20 782 17 812 18 9.3 10
stress-ng_sock 1719 30 1392 28 1591 28 1367 28 1309 26 23.8 13.3
stress-ng_switch 1431 26 1411 25 1329 23 1204 21 1125 19 21.3 26.9
stress-ng_vec 1446 29 914 18 913 18 910 18 911 18 36.9 37.9

Osb is an abbreviation of osbench suite.
The tasks osbench_(files|processes|threads) are for creating a number of files, processes,
and threads.
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our findings suggest that CPU vulnerability patches affect negativelymost of the benchmarks’
energy consumption and run-time performance.

The stress-ng benchmark suite is equipped with tasks to investigate the performance
of operations such as fork (stress-ng_fork), send/receive messages via the System V mes-
sage IPC (stress-ng_msg), semaphorewait and post operations (stress-ng_sem), socket open,
send a message, and close (stress-ng_sock), context-switch (stress-ng_switch) and more.
The tasks of context-switch, socket usage, messaging, and vector math operations (stress-
ng_vecmath) had energy reductions of 21.3%, 23.8%, 49.2%, and 36.9%, while their run-time
performance was increased by 26.9%, 13.3%, 54.5%, and 37.9%, respectively. The remaining
tasks also experienced energy and run-time performance gains ranging from 5.9% to 10.8%
and from 7.1% to 12.5%, respectively.

One of the test cases that is greatly affected by the CPU vulnerability patches is the ctx-
clock, amicro-benchmark that performsnumerous context-switches by invoking systemcalls.
Our results suggest that ctx-clock’s energy savings and run-time performance increased by
81.8% and 82.3%, respectively, after disabling all CPU vulnerability patches (we discuss more
on the reason behind this findings in Section 5.3). The performance impact on the context-
switch operations was also visible from the results of the stress-ng_switch task.

Similarly to stress-ng and ctx-clock, osbench tasks experienced significant energy and run-
time performance gains after disabling all the CPU vulnerability patches. The tasks of pro-
gram launching,5memory allocation, file, processes, and threads creation had an energy and
run-time performance boost ranging from 6.5% to 17.6% and 8.6% to 21%, respectively.

Among the test benchmark suites schbench, a benchmarking tool for kernel thread
latency, was affected the least from the CPU vulnerability patches (less than 1%).

Table 4.13: Machine Learning Tasks Energy (in Joules) and Delay (in seconds) Implications

Stock Meltdown Spectre MDS AllOff Difference (%)

Tasks Energy Time Energy Time Energy Time Energy Time Energy Time Energy Time

md_con_alexnet 1015 17 1017 17 1012 17 1006 17 1009 17 0.6 0
md_con_all 35053 639 35085 638 35024 639 35148 638 35116 637 0.1 0.3
md_con_gnet 7463 131 7437 131 7452 131 7486 131 7458 131 0 0
md_ip_1d 880 15 883 15 882 15 881 15 879 15 0.1 0
md_ip_all 2325 47 2323 47 2325 47 2347 47 2320 47 0.1 0
md_rnn_training 2107 37 2095 37 2090 37 2107 37 2099 37 0.4 0
rbenchmark 745 26 766 25 742 26 710 25 692 24 7.1 7.7
scikit-learn 1316 46 1335 46 1323 46 1319 45 1315 45 0 2.1

For the benchmarkmkl-dnn we use themd abbreviation in the this Table.

Machine Learning: Our findings in the case of the machine learning category indicate
that the patches do not affect neither the performance nor the energy consumption of
related tasks. However, the rbenchmark was an exception with a 7.1% drop in the energy
consumption and a corresponding reduction of its execution time as seen in Table 4.13.

5forking and starting programs using the execlp and waiting for them to finish
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Table 4.14: Network Suites Energy (in Joules) and Delay (in seconds) Implications

Stock Meltdown Spectre MDS AllOff Difference (%)

Tasks Energy Time Energy Time Energy Time Energy Time Energy Time Energy Time

iperf_tcp 290 33 296 33 291 33 293 33 291 33 0 0
iperf_udp 295 33 291 33 289 33 292 33 288 33 2.2 0
network_loopback 1488 49 1415 45 1365 45 1398 46 1267 40 14.8 18.3

Network Suites: The limited number of results in Table 4.14 did not help on drawing clear
conclusions regarding the energy and run-time performance impact of the CPU vulnerability
patches have over network operations. The obtained results illustrate that in the case of the
network_loopback, both the energy and run-time performance were increased by 14.8%
and 18.3% after disabling all patches. Additionally, iperf’s test cases showed some minor
changes in their energy and run-time performance.

Table 4.15: Memory Suites Energy (in Joules) and Delay (in seconds) Implications

Stock Meltdown Spectre MDS AllOff Difference (%)

Tasks Energy Time Energy Time Energy Time Energy Time Energy Time Energy Time

cb_memcpy 578 22 580 22 574 22 575 22 578 22 0 0
cb_memset 602 24 608 24 596 24 601 24 603 24 0 0
cb_mixed 1835 83 1853 83 1814 83 1832 83 1824 83 0.5 0
cb_read 532 27 533 27 528 27 528 27 532 27 0 0
cb_write 576 28 581 28 572 28 578 28 578 28 0 0
mbw_512 206 8 207 8 206 8 204 8 205 8 0.6 0
mbw_1024 414 17 410 17 411 17 406 17 408 17 1.5 0
mbw_4096 1648 70 1636 69 1641 70 1627 69 1627 69 1.2 1.4
rs_add_float 4031 140 4000 140 4014 140 4003 140 3961 140 1.7 0
rs_add_int 3914 141 3920 140 3908 140 3858 140 3882 140 0.8 0.7
rs_copy_float 4010 140 4009 140 3994 140 3986 140 3969 140 1 0
rs_copy_int 3914 141 3918 140 3896 140 3856 140 3882 140 0.8 0.7
rs_scale_float 4029 140 4002 140 4007 140 3996 140 3962 140 1.6 0
rs_scale_int 3921 141 3934 140 3909 141 3854 140 3884 140 0.9 0.7
rs_traid_float 4020 140 4018 140 4012 140 4000 140 3980 140 0.9 0
rs_traid_int 3932 141 3920 140 3917 140 3874 140 3876 140 1.4 0.7
stream 2279 65 2283 65 2272 65 2258 65 2267 65 0.5 0
sysbench_mem 261 5 261 5 258 5 261 5 259 5 1 0
t-test1 241 7 228 7 240 7 225 7 211 6 12.3 14.2
tinymembench 5969 275 5848 275 5950 275 5175 264 5440 270 8.8 0.4

For the benchmark cachebench we use the cb abbreviation, while for ramspeed the rs.

Memory Suites: While examining memory benchmark suites, we witnessed minor energy
and run-time performance gains that were less than 2% (see Table 4.15). However, for the
t-test1 and tinymembench, we observed energy savings of 12.3% and 8.8% respectively.
Similarly, the above benchmarks’ run-time performance was increased by 12.2% and 0.3%,
respectively.
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Table 4.16: Imaging Tasks Energy (in Joules) and Delay (in seconds) Implications

Stock Meltdown Spectre MDS AllOff Difference (%)

Tasks Energy Time Energy Time Energy Time Energy Time Energy Time Energy Time

dt_masskrug 498 12 499 12 496 12 495 12 493 12 1 0
dt_bench 1193 27 1193 27 1184 27 1191 27 1188 27 0.3 0
dt_room 400 9 400 9 399 9 399 9 396 9 1 0
dcraw 486 24 483 23 480 23 484 23 477 23 1.9 4.1
gegl_antialias 1178 47 1179 47 1168 47 1166 46 1166 46 1 2.1
gegl_cartoon 2817 122 2835 122 2780 121 2775 120 2771 120 1.6 1.6
gegl_color 1483 68 1495 68 1459 67 1473 67 1470 67 0.8 1.4
gegl_crop 241 10 244 10 237 9 239 9 241 9 0.8 10
gegl_reflect 791 35 799 35 786 35 792 35 790 35 0.1 0
gegl_rotate 1178 48 1177 48 1170 47 1170 47 1164 47 1.1 2
gegl_scale_size 175 6 176 6 172 6 171 6 174 6 0.1 0
gegl_tile_glass 852 35 858 35 842 35 839 34 834 34 2.1 2.8
gegl_wavelet 1665 73 1678 73 1644 72 1640 72 1636 72 1.7 1.3
gm_gaussian 8651 310 8672 307 8621 306 8627 307 8645 307 0 0.9
gm_minify 1090 48 1091 47 1086 47 1086 47 1076 46 1.2 4.1
gm_resize 2514 71 2510 71 2463 68 2504 70 2499 70 0.6 1.4
gm_rotate 2082 198 2043 195 2042 196 2026 194 1991 193 4.3 2.5
gm_sharpen 18257 482 18272 483 18281 482 18242 481 18236 480 0.1 0.4
inkscape 556 23 551 23 552 23 550 23 544 22 2 4.3
rawtherapee 3969 92 3966 91 3925 90 3949 91 3940 91 0.7 1
rsvg 369 16 360 15 363 16 362 15 353 15 4.2 6.2
tjbench 560 24 560 24 558 24 559 24 559 24 0.2 0

For graphics_magick we use the gm abbreviation, while for darktable we use the dt.

Imaging Benchmarks: Table 4.16, indicates that all tasks had minor energy and run-time
performance gains after disabling the CPU vulnerability patches. In particular, the graph-
ics_magick tasks (gm in the Table 4.16) had energy and run-time performance gains from
0.1% to 4.3% and 0.4% to 4.1%, respectively. Gegl tasks experienced energy and run-time
performance gains from 0.1% to 2.1% and 1.3% to 10%, correspondingly. Likewise, imaging
tools such as dcraw, inkscape, and rsvg had energy savings equal to 2%, 2.1%, and 4.2%
and run-time performance increase of 4.1%, 4.3%, and 6.2%, respectively. The benchmarks
of tjbench, rawtherapee, and darktable had a minor energy and run-time performance
deterioration.

Renderers: Renderers are computer programs that generate images from modeled objects.
The results coming from the Renderers benchmarks depict that only qgears had major
energy and run-time performance gains after disabling the CPU vulnerability patches (see
Table 4.17). Qgears tasks had energy savings of 33.7% and execution time reduction of
23.3%, on average. Also, the tasks of j2dbench text and paraview waveletvolumn achieved
energy gains of 1.1% and 4.3%, respectively. All the other tasks had less than a percentage
of energy savings or run-time performance increase.

Desktop Graphics: Table 4.18 presents the results coming from three dimensional gaming
benchmarks. All benchmarks ran specific, predefined scenarios. After analysing our findings,
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Table 4.17: Renderer Suites Energy (in Joules) and Delay (in seconds) Implications

Stock Meltdown Spectre MDS AllOff Difference (%)

Tasks Energy Time Energy Time Energy Time Energy Time Energy Time Energy Time

aobench 868 38 868 38 858 38 863 38 861 38 0.7 0
c-ray 9416 188 9437 188 9380 188 9430 188 9398 188 0.2 0
j2dbench_all 13232 361 13153 361 13168 361 13155 361 13207 361 0.1 0
j2dbench_graphics 9078 245 9019 245 9039 245 9039 245 9033 244 0.4 0.4
j2dbench_images 3796 105 3780 105 3780 105 3770 105 3791 105 0.1 0
j2dbench_text 393 14 387 14 392 14 391 14 389 14 1 0
jxrendermark 448 21 445 20 446 21 448 20 446 20 0.4 4.7
ospray_san_miguel 2329 55 2320 55 2343 55 2337 55 2344 55 0.6 0
ospray_xfrog_forest 10166 184 10138 184 10070 183 10111 184 10084 183 0.8 0.5
povray 6296 102 6292 102 6270 102 6309 102 6249 102 0.7 0
pv_manyshperes 7818 360 7842 360 7816 360 7886 362 7782 358 0.4 0.4
pv_waveletcontour 19423 784 19349 781 19408 784 19324 779 19356 779 0.3 0.2
pv_waveletvolumn 1367 31 1372 31 1375 31 1367 31 1308 31 4.3 0
qgears_image 4081 168 3799 162 3767 162 3768 162 3080 144 24.5 14.2
qgears_render 3900 160 3622 155 3593 155 3590 155 2970 140 23.8 12.5
qgears_compo 719 26 391 16 388 16 390 16 216 10 69.9 61.5
qgears_gearsfancy 3887 161 3617 155 3595 144 3590 155 2971 139 23.5 13.6
qgears_text 2595 106 2333 104 2322 104 2330 104 1824 90 29.7 15
rays1bench 1867 33 1862 33 1858 33 1878 33 1857 33 0.5 0
smallpt 1325 25 1327 24 1326 24 1335 25 1322 24 0.2 4
ts_hair 3314 60 3319 60 3292 60 3301 60 3306 60 0.2 0
ts_non_exponential 827 14 831 14 821 14 823 14 822 14 0.6 0
ts_volumetric_caustic 1224 19 1229 19 1215 19 1218 19 1220 19 0.2 0
ts_water_caustic 2134 48 2137 48 2124 48 2133 48 2129 48 0.2 0
ttsiod-renderer 2565 50 2578 50 2561 50 2559 50 2561 50 0.1 0

For the benchmark tungsten we use the ts abbreviation in this Table, while for paraview the pv.
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Table 4.18: Desktop Graphics Energy (in Joules) and Delay (in seconds) Implications

Stock Meltdown Spectre MDS AllOff Difference (%)

Tasks Energy Time Energy Time Energy Time Energy Time Energy Time Energy Time

glmark2_l 13149 332 13127 332 13023 332 13007 332 13138 332 0.1 0
glmark2_m 13273 332 13247 332 13173 332 13199 332 13273 332 0 0
glmark2_h 13152 332 13120 332 13019 332 13091 332 13124 332 0.2 0
glmark2_u 13456 332 13382 332 13312 332 13361 332 13417 332 0.3 0
nexuiz_l 962 24 943 24 941 24 941 24 943 24 1.9 0
nexuiz_m 1291 30 1275 30 1273 30 1272 30 1275 30 1.2 0
nexuiz_h 2496 53 2466 52 2458 52 2463 52 2466 52 1.2 1.8
nexuiz_u 2499 53 2465 52 2463 52 2461 52 2462 52 1.4 1.8
openarena_l 4992 106 5091 106 5057 108 4989 106 4991 106 0 0
openarena_m 7204 146 7168 146 7175 146 7181 146 7188 146 0.2 0
openarena_h 15811 305 15758 304 15697 304 15706 305 15694 305 0.7 0
openarena_u 3816 84 3807 84 3784 84 3800 84 3805 84 0.2 0
uv_l 10161 233 10181 232 10152 232 10136 232 10168 232 0 0.4
uv_m 10959 244 1099 243 11000 244 10920 243 10928 243 0.2 0.4
uv_h 19942 419 20047 417 20053 417 19978 419 19887 419 0.2 0
uv_u 32239 659 32382 656 32402 655 32276 656 31989 659 0.7 0
uh_l 12751 312 12745 312 12716 312 12704 312 12756 312 0 0
uh_m 13483 315 13439 315 13406 315 13400 315 13439 315 0.3 0
uh_h 20295 440 20361 438 20295 438 20302 438 20274 439 0.1 0.2
uh_u 32239 724 32382 720 32402 720 32276 720 31989 721 0.1 0.4
xonotic_l 45011 890 44993 887 44967 887 44926 886 44996 886 0 0.4
xonotic_m 44925 889 44889 887 44937 886 44938 885 44979 885 0 0.4
xonotic_h 44873 888 44904 887 44916 886 44911 886 44906 885 0 0.3
xonotic_u 44939 887 44992 886 44905 888 44934 886 44913 885 0 0.2

Next to each task we added letters that denote different screen resolutions.
l (low) denotes the 800x600 screen resolution
m (medium)refers to the 1024x768 resolution
h (high) denotes the 1920x1080 screen resolution
u (ultra-high) refers to the 2560x1440 resolution

we observed minor differences regarding energy and run-time performance (less than 1%).
In the case of the nexuiz tasks, we saw energy and run-time performance gains of 1.5% and
1.8%, on average.

4.3.1.2 Communication-related Security

For this security measure, we used a rather simple scenario to exchange multiple messages
between a client and a server. By disabling the HTTPS protocol, we observed that both the
energy consumption and the execution time are reduced by 56.66% and 55.92%, respec-
tively. Our results can be explained if we consider the encryption overhead that is introduced
during the initial handshake, and to encrypt every exchanged package.
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4.3.1.3 Memory-related Protection

We performed an experiment to measure the energy consumption and run-time perfor-
mance of a C program that allocates 100MiB of memory and utilises thememset function to
zero-out the associated memory space.

To test the energy implications ofmemory zeroing, we used redis-bench [2] and obtained
energy measures for the tasks of set, hset, lpush, and lrange. Moreover, we executed the
above tasks using the -d command-line argument, to set a payload of 100MiB, andmeasured
their energy consumption and run-time performance. Afterwards, we employed the strace
command-line tool to obtain all themmap system calls associated with memory allocations
i.e., unspecified file descriptor and no memory sharing options. Our results suggest that for
the set, hset, lpush, and lrange operations, the memory zeroing was responsible of 4.5%
and 4.55%, on average, of the benchmarks’ total energy consumption and execution time,
respectively.

Table 4.19: The Phoronix [161] Benchmark Suite Used for GCC

Category Benchmark Suites

Audio Encoding encode-mp3
Video En-
code/Decode ffmpeg, x264, x265

File Compression compress-bzip2, compress-xz, lzbench, compress-zstd
Database Suite rocksdb, sqlite, mcperf, redis

CPU Massive

nginx, apache, blogbench, m-queens, sysbench, byte, cloverleaf, tiobench, botan,
xsbench, swet, john-the-ripper, himeno, ebizzy, cpp-perf-bench, brl-cad, blake2s,
openssl, hmmer, nero2d, gmpbench, fhourstones, stockfish, crafty, aircrack-ng,
hpcg

Disk Suite postmark, iozone, fs-mark, dbench
Kernel osbench, stress-ng, schbench, ctx-clock
Machine Learn-
ing mkl-dnn

Memory Suite stream, tinymembench, t-test1, mbw, ramspeed, cachebench
Networking Suite iperf
Imaging dcraw, tjbench, graphics-magick
Renderers smallpt, tungsten, ttsiod-renderer, c-ray, aobench, povray, qgears, jxrendermark

4.3.1.4 Compiler-related Safeguards

To analyse the energy and run-time performance implications of compiler-related safe-
guards, we used the GCC toolkit. From the benchmarks defined in Section 3, we used only
the benchmarks written in C and C++. To this end, we tested 73 out of the 128 benchmarks
(see Table 4.19). We use the terms Stock and AllOff to refer to the scenarios where all the
investigated GCC safeguards are enabled and disabled, respectively. Apart from the above
two scenarios, we also examine the energy and delay implications of GCC safeguards such as
(1) -fno-stack-protector (Stack Protector in Table 4.20) that disables the protection against
stack smashing attacks for all functions, (2) -z execstack (Execstack in Table 4.20) that refers
to the scenario where binaries are allowed to run in the stack, (3) -no-pie and -fno-pic (PIE &
PIC in Table 4.20) which define the scenario where binaries, dependencies, and code are not
randomized in memory, (4) -Wl,-z,norelro (RELRO in Table 4.20) that dispenses protection
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Table 4.20: GCC-related Safeguards Energy (in Joules) and Delay (in seconds) Implications

Stock Stack Protector Execstack PIE & PIC RELRO Fortify Source AllOff Difference (%)

Tasks Energy Time Energy Time Energy Time Energy Time Energy Time Energy Time Energy Time Energy Time

aio-stress 996 141 1001 141 911 131 1039 136 971 137 988 140 974 138 2.2 2.1
blogbench_write 1842 52 1843 52 1761 51 1830 52 1812 54 1869 52 1764 51 4.2 1.9
botan_aes 373 22 376 22 379 22 374 22 378 22 374 22 369 22 1.3 0
botan_blowfish 354 20 349 20 357 20 357 20 356 20 358 20 344 20 2.8 0
botan_twofish 374 20 371 20 376 20 374 20 376 20 375 20 366 20 2.1 0
byte_register 1373 121 1382 121 1373 121 1295 121 1381 121 1378 121 1273 121 7.2 0
byte_int 1376 121 1379 121 1372 121 1292 121 1374 121 1376 121 1271 121 7.6 0
byte_float 1376 121 1374 121 1371 121 1295 121 1380 121 1379 121 1274 121 7.4 0
bzip2 377 17 336 15 377 17 334 15 378 17 337 15 332 15 11.9 11.7
dcraw 429 25 436 25 429 24 428 24 430 24 428 24 421 24 1.8 4
gm_gaussian 24412 619 23289 610 24386 624 24523 618 24419 617 24302 623 23450 622 3.9 0.4
gm_sharpen 51607 1209 48798 1202 51298 1212 51035 1209 50949 1214 53957 1206 48903 1213 5.2 0.3
gm_resize 5747 141 5703 139 5736 141 5771 140 5775 141 5759 142 5640 141 1.8 0
gm_rotate 2158 229 2007 180 2009 186 2003 178 2169 229 2050 192 2063 192 4.4 17
hmmer 1252 24 1240 24 1248 24 1279 25 1254 25 1247 24 1208 24 3.5 0
lzbench_exz 11334 635 10959 621 11247 630 11191 636 11327 632 11293 633 10884 621 3.9 1.8
postmark 1050 138 1066 141 1002 132 1137 148 1022 134 1051 138 1018 133 3 3.6
povray 5772 105 5634 102 5801 105 5768 104 5832 105 5832 104 5633 102 2.4 2.8
rocksdb_fillrandom 1304 41 1263 41 1272 41 1314 41 1303 41 1274 41 1256 41 3.6 0
rocksdb_readrandom 1237 24 1136 23 1208 24 1244 25 1268 25 1208 24 1161 23 6.1 4.1
schbench_2 798 30 779 30 793 30 803 30 805 30 796 30 777 30 2.6 0
schbench_4 1018 30 998 30 1020 30 1024 30 1025 30 1024 30 993 30 2.4 0
schbench_8 1033 30 1011 30 1037 30 1041 30 1040 30 1030 30 1010 30 2.2 0
sqlitebench 1148 171 1101 166 1075 163 1092 166 1149 171 1121 170 1074 162 6.4 6.3
sysbench_cpu 1013 23 884 21 1027 23 895 22 1025 23 1017 23 883 22 12.8 4.3
tjbench 501 24 485 24 499 24 505 24 500 24 494 24 484 24 3.3 0
ts_hair 3130 60 3040 59 3121 60 3137 60 3131 60 3134 60 3007 59 3.9 1.6
ts_caustic 1998 48 2007 48 2044 48 1990 48 1990 48 1990 48 1953 47 2.2 2
ts_non_exponential 782 14 751 14 781 14 793 15 780 14 783 14 755 14 3.4 0
ts_volumetric 1123 20 1072 19 1123 20 1131 20 1122 20 1122 20 1078 19 4 5
tiobench_read 2328 311 2232 305 2262 310 2350 313 2284 305 2211 302 2217 301 4.7 3.2
tiobench_random_r 2274 311 2197 307 2208 310 2291 306 2278 310 2173 305 2175 304 4.3 2.2
tiobench_random_w 3850 557 3774 552 3780 555 3854 547 3832 551 3751 549 3743 546 2.7 1.9
xsbench 3072 81 2942 79 3087 81 2958 79 3079 81 3072 81 33774 79 3.4 2.4

For the benchmark tungsten we use the ts abbreviation in this Table, while for graphics-magic the gm. For cpp_stepanov_abstraction we
use the cpp_sa, for cpp_stepanov_vector the cpp_sv, for cpp_random_numbers the cpp_rn.
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against Global Offset Table (GOT) overwrite attacks, and (5) -U_FORTIFY_SOURCE (For-
tify Source in Table 4.20) that defines the scenario where buffer overflow checks for memory
and string functions are disabled.

Table 4.20 illustrates the tasks affected the most from the examined GCC safeguards,
while the colored rows denote the scale of the energy savings as defined in Section 4.3.1.1.
In this section, we depict and discuss only the tasks with energy reduction over 1% after
disabling all the security flags (AllOff scenario). Because of the limited number of tasks for
some categories, we depict our measurements in a single table. However, all the raw values
of the remaining tasks are publicly available in our repository.6 Moreover, we excluded the
compilation tasks because GCC safeguards take effect at run-time and not at compile time.

Unaffected Categories. The tasks from the categories of machine learning, memory
benchmarks, network suites, video and audio encoding are mostly unaffected in the context
of this experiment.

File Compression. For this category, bzip2 experienced energy savings equal to 11.9% and
increased run-time performance of 11.7%. Also, lzbench xz and libdeflate tasks had average
energy savings of 4.7% and reduced execution time of 2.2%, while the remaining tasks had
less than a percentage of performance improvement after disabling the associated GCC
safeguards.

Database Systems. Regarding database systems, only rocksdb’s and sqlitebench’s perfor-
mance were affected. Specifically, sqlitebench exhibited energy savings of 6.4% and reduced
execution time of 6.3% after disabling all GCC safeguards. Rocksdb tasks experienced on
average 4.8% of energy savings and 2.1% of reduced execution time. For the remaining
systems, we observed a performance impact of less than 1%.

Compute-Intensive. There were three compute-intensive benchmarks that were affected
mostly in this experiment. In particular, Sysbench, a multi-threaded benchmark tool based
on LuaJIT, introduced the most energy and run-time performance savings (12.3% and
4.3%, respectively). Also, byte, a benchmark used for stressing multi-core systems through
synthetic workloads, had on average energy savings of 7.6%, while its tasks’ execution time
remained the same. The tasks of cpp-performance-bench (cpp abbreviation in Table 4.20)—a
tool that benchmarks different C++ features, operations, and data structures—experienced
on average energy savings of 1.3%. Tiobench, a multi-threaded I/O benchmark, had on
average energy savings of 3.6% and increased run-time performance of 2.1%. Lastly, the
benchmarks of cloverleaf, hmmer, botan, blogbench, and xsbench achieved on average
energy savings of 3% and less than a percentage of run-time performance increase.

Kernel Operations. We found that only schbench was affected after disabling the corre-
sponding GCC safeguards, while the remaining benchmark suites had minor performance
changes. Among the osbench tasks, only the file creation had minor performance gains after
turning off the safeguards.

Disk Suites. There were two disk suites that produced interesting results. The benchmark
6https://github.com/stefanos1316/resultsForEECSE20/tree/master/gcc

https://github.com/stefanos1316/resultsForEECSE20/tree/master/gcc
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of aio-stress had energy savings and run-time performance increase of 2.2% and 2.1%,
respectively. Similarly, the energy and run-time performance of Postmark increased by 3%
and 3.6%, respectively.

Imaging. The investigated benchmarks for the corresponding category show that dcraw,
tjbench, and three out of the five examined tasks of graphics-magick (gm in Table 4.20) had
energy savings ranging from 1.8% to 5.2% and zero to less than a percentage of run-time
performance increase after disabling the associated GCC safeguards.

Renderers. We examined four renderer benchmark suites. Our results suggest that three
out of four benchmark suites were affected. Specifically, the tasks of tungsten (ts in Ta-
ble 4.20) achieved 3.3% and 2.1% of energy reduction and run-time performance increase,
on average. Also, the benchmarks of c-ray and povray had on average 2.2% of energy and
1.2% of run-time performance increase. There were no performance implications in the
case of the qgreas benchmark.

Our analysis shows that the CPU vulnerability patches impact the energy and
run-time performance of most of the tested benchmarks. Notably, real-word
applications such as Apache, Nginx, Redis, and Memcached had energy and
run-time performance gains from 18% to 45% after disabling the CPU vulner-
ability patches. Similarly, GCC safeguards affect the energy and run-time per-
formance of applications such as bzip2 and Sysbench by more than 10%. We
observed similar results in the case of memory and communications-related
security mechanisms too.

4.3.2 SG-RQ2. Is the energy consumption of the examined security mech-
anisms proportional to their run-time performance?

Several researchers [175, 37] have observed that the energy consumption of a computer
platform tends to be proportional to its executiontime. However, many others have provided
opposing results [126, 56, 86, 133, 167]. To evaluate whether the above statement stands in
the context of our study, we checked the tasks’ energy consumptionwhile dispensing security
mechanisms and examined the way their run-time performance fluctuates.

4.3.2.1 CPU-related Vulnerability Patches

To identify the relationship between the energy consumption and run-time performance of
the CPU vulnerability patches, we plotted a scatter plot. Figure 4.9 shows the energy con-
sumption (Y -axis) and run-time performance (X -axis) of the CPU vulnerability patches. By
performing normality tests, we found that our data does not follow a normal distribution.
Therefore, we performed the Spearman’s correlation test and we obtained the value of 0.90
which indicates a very strong positivemonotonic relationship between the energy consump-
tion and run-time performance for the tasks’ of CPU vulnerability patches.
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Figure 4.9: Energy-Delay Comparison of CPU Vulnerability Patches

4.3.2.2 Communication-related Security

According to the results in Section 4.3.1.2, we found that the energy consumption of the
corresponding tasks is proportional to their run-time performance.

4.3.2.3 Memory-related Protection

To find out the impact of memory zeroing, we first measured the energy cost for zeroing out
a specific size of memory. Then, we estimated the percentage cost that memory zeroingmay
have on Redis tasks. Because our results are based on estimations, for these security mech-
anisms, we cannot be certain if the energy consumption of the Redis tasks is proportional to
their run-time performance.

4.3.2.4 Compiler-related Safeguards

Figure 4.10 illustrates the collected energy consumption and run-time performance for
the GCC safeguards in the form of scatter plot. The X -axis shows the run-time perfor-
mance (in seconds) and the Y -axis presents the energy consumption (in Joules) for the
corresponding security mechanism. After performing a normality test, we found that our
data does not follow a normal distribution. Therefore, we performed the Spearman’s
correlation test to identify the monotonic relationship between the energy consumption
and run-time performance for the GCC safeguard scenario. To this end, we obtained the
statistical value of 0.83 which shows that there is a very strong positive monotonic re-
lationship between the energy consumption and the run-time performance of the GCC tasks.
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Figure 4.10: Energy-Delay Comparison of GCC Safeguards

Our findings suggest that energy consumption and the run-time performance
have a very strong monotonic correlation for the investigated benchmarks in
the case of the CPU vulnerability patches and the GCC safeguards. Therefore,
we cannot clearly conclude that an application’s energy consumption depends
solely on its run-time performance.

4.3.3 SG-RQ3. How do security mechanisms affect the energy consump-
tion and the run-timeperformance of different applications and util-
ities?

We focus on the impact of security mechanisms on applications and utilities. Note that we
do not discuss memory zeroing and encrypted network communications because they affect
specific application types. In particular, encrypted network communications affect only web
and application servers, while the memory zeroing impacts memory-intensive applications.

4.3.3.1 CPU-related Vulnerability Patches

The categories with the highest energy and run-time performance degradation from CPU
vulnerability patches include code compilation, database systems, compute-intensive tasks,
kernel operations, and disk I/O. In other cases, such as video and audio encoding, graphic
suites, memory operations, and machine learning, the impact was not as high.

Specifically, for the category of databases, the in-memory database systems such as Re-
dis andMemcached were affected the most. Also, web servers such as Apache, Nginx, and
node-express had an important energy and run-time performance deterioration among the
compute-intensive benchmarks category. From the kernel benchmark suites, themajority of
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tests were heavily affected by the CPU vulnerability patches. For example, operations such
as context-switches,message IPC, fork,memory allocation, threads, processes, and files cre-
ation had a major energy and run-time performance deterioration. Last, the benchmark
category of filesystem usage also showed that most of its applications were affected by the
CPU vulnerability patches.

From the investigated CPU-related vulnerability patches, the patch of MDS tends to be
on average the most energy-hungry, while the Spectre patch follows. Finally the Meltdown
patch consumes the least energy among them. Regarding run-time performance, the MDS
vulnerability patch introduces the most run-time performance deterioration, while Melt-
down follows, and Spectre causes the lowest run-time performance degradation. How-
ever, the results do not suggest that a single CPU vulnerability patch is more performance-
inefficient than the others. For instance, after disabling the Meltdown and MDS patches,
we experienced more energy savings for the redis benchmark compared to Spectre (see Ta-
ble 4.9). However, after disabling the Spectre patch for themcperf benchmark, wewitnessed
more energy savings compared toMeltdown and MDS (see Table 4.9).

4.3.3.2 Compiler-related Safeguards

The GCC safeguards introduced performance degradation to most of the investigated cate-
gories. However, specific cases including compute-intensive, database, and file compression
benchmarks seem to be affected more than the others. Likewise, three out four examined
benchmarks from the renderers category illustrated energy savings after dispensing the com-
piler security flags. Similarly, most of the investigated applications from the imaging category
indicated a better energy and run-time performance after disabling all the safeguards.

Focusing on the corresponding mechanisms, we observed that compiling with the -fno-
stack-protector GCC safeguard led to the highest energy savings and increased run-time
performance. By using the -no-pie and -fno-pic GCC safeguards, we had the second most
energy and run-time performance gains. Then the flag of -U_FORTIFY_SOURCE had
the third most energy and run-time performance gains, while the -z,norelro followed.
Lastly, the -z execstack contributed least to the energy and run-time performance gains
among the examined GCC safeguards.

By analysing our results, we point out that applications found under the cate-
gories of database systems, code compilation, compute-intensive, kernel oper-
ations, disk usage had the highest energy and run-time performance degrada-
tion from the CPU vulnerability patches. For the GCC safeguards, application
types such as compute-intensive, databases systems, and file compression had
the highest energy and run-time performance gains after disabling the associ-
ated security flags.



Chapter 5

Discussion

In this chapter, we discuss and reason over the results of our studies. First, we argue on the
energy-delay of various programming languages, then we examine the IPC implementations
outcome, and, finally, we point out the reasons behind the security mechanisms results.

5.1 Programming Languages Findings
We investigate the root causes of the results of this section by digging into the source code
of the tasks that showed better EDP results. We focus on the programming languages that
achieved the most EDP-efficient results. Additionally, we explain how the collective results
from the heatmaps can be useful for practitioners in developing energy-aware applications.

5.1.1 Champions
Concurrency. The most EDP-efficient implementation is achieved by the programming
languages that rely on external library implementations for concurrency tasks. For in-
stance, C, that achieved far better EDP, uses OpenMP [83] and libco [30] to execute the
tasks found under the concurrency categories, in contrast to Perl’s and PHP’s thread libraries.

Regular Expressions. JavaScript produces the most EDP-efficient results for regular-
expression tasks, such as pattern matching and replacing. The reason behind this is the
Node.js, a run-time environment utilising the V8 JavaScript engine (built in C++) and libuv
(built in C), that achieves a speed-up for regular expressions by using the RegEx library.
The RegEx library is built using the CodeStubAssembler which provides efficient low-level
functionality [58]. Therefore, we conducted an experiment where we used nvm [31], a
Node.js version management utility, to install a Node.js version that does not support the
above-described libraries and related functionality (versions below 8.5.7). When using the
version where the RegEx library does not use Irregexp and CodeStubAssembler, the EDP of
the regular-expression tasks increased by 331% (for the particular Node.js version).

Object-Oriented Features. JavaScript, in most cases, achieves better results for the classes
and call-an-object-method tasks. However, JavaScript is dynamically typed, i.e., types and
type information are not explicit and attributes can be added to and deleted from objects
on the fly. That means that object orientation under JavaScript is very different than object

94
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orientation in another language such as C++, where the focus is on designing polymorphic
types. Also, to access the types and properties effectively, the V8 engine creates and uses
the hidden classes. The hidden classes are created on run-time and are attached to each
and every object in order keep track of the objects’ shape. This helps V8 engine to have an
internal representation of the object to improve the property access time. In addition, once
a hidden class is created for a particular object, the V8 engine shares the same hidden class
among objects created in the same way [60, 10].

File handling. Rust, compared to VB.NET, produces better EDP results for the file-I/O
operations regarding the embedded and laptop platforms. We performed a small
experiment—using the strace [46] Linux built-in command—and we found that VB.NET’s in-
termediate code for the task of file-I/O, makes 14 times more system calls in total compared
to Rust. According to Aggarwal et al. [8], when the system calls between two applications
diverge significantly, the applications’ power usage may differ too. Moreover, the VB.NET
implementation for this task takes 89% of its total execution time formmap (creating a new
mapping in the virtual address space for the current process files) and munmap (deleting
the mapping for the process when it is no longer needed). VB.NET is slower since it executes
the lseek operation when writing in a file, which is not the case for Rust. This might occur
because VB.NET’s I/O-buffers are smaller than Rust’s and require more than a single write
operation to write all the data in the file. In this way, Rust spends much less time for I/O
system calls compared to VB.NET, resulting in faster execution time and thus lower EDP.

Functional Programming Features. C++ is the language exhibiting the best EDP efficiency for
the function-composition task. The reason behind this is that C++ uses meta-programming
through the Standard Template Library to compose functions at compile-time via the help
of preprocessor. As a result, C++ has faster execution time and less energy consumption
resulting in more efficient EDP compared to the other implementations.

5.1.2 Impact

We believe that a developer can consult our heatmaps and use them as a guideline to de-
velop more EDP-efficient applications. For instance, a developer can create a micro-services
application by developing each service using a particular programming language that is more
EDP-efficient for a task. For the development of amore complex application—that may com-
binemore than one of the generic tasks evaluated in this study—a developer can choose the
language or languages that will provide the best efficiency, in terms of EDP.

In the context of embedded systems, even though we showed in Section 4.1.2 that Java
and Swift, the major programming languages for developing Android and iOS applications,
they are on average EDP-inefficient. Therefore, developers can use alternative efficient prac-
tices. For instance, when developing Android applications, practitioners can use the Native
Development Kit [44] to incorporate native C and C++ code for heavy arithmetic, concurrent,
and functional tasks.

In general, each programming language offers a number of different features such as dy-
namic and static binding, lazy, and eager evaluation, garbage collection, automatic counter
references, strong andweak typing, and so on. Moreover, the different platforms’ CPU archi-
tectures and resources could be also a factor of causing differences in EDP results. We do not
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know how these might affect the EDP. However, our results show certain programming lan-
guage implementations are more beneficial on selected tasks. Therefore, researchers could
use these findings to identify which are the factors or features causing these outcomes and
use them in developing EDP-efficient programming languages.

5.2 IPC Findings

In this section, we examine the reasons behind our results and try to point out the implica-
tions. Moreover, we discuss their significance and potential for adoption of recommended
practices.

5.2.1 Interpreting the Findings

From the collected results, JavaScript emerges as the programming language with the low-
est energy consumption and best run-time performance implementation for gRPC. All the
gRPC libraries, for all the selected programming languages, are using shared C as their core-
library (a binary file with a set of callable C functions) to build their implementations on
top of it. However, JavaScript’s gRPC library implementation is using C++ native addons1 to
achieve better performance, a pattern that is not applied for the other implementations. Ad-
ditionally, Oliveira et al. showed that combining Java or JavaScript applications with native
programming languages such as C/C++, can offer up to 100× times less energy consumption
and ten times better run-time performance for devices with ARM micro-processor [111].
Also, our study on Georgiou et al. [56] and that of Pereira et al. [126] have shown that C++ is
among themost energy-efficient programming languages for servers and laptops. Therefore,
using C++ with native addons helps JavaScript to reduce energy consumption.

5.2.2 Lessons learned

Each of the selected implementations is making different use of the system calls in their
lower level of abstraction. Employing tools such as strace to investigate them can provide
hints to identify reasons behind the increased energy consumption and poor run-time per-
formance. We have also observed that JavaScript had the lowest number of wait-like sys-
tems calls because Node.js—JavaScript’s server-side run-time environment—uses an event-
driven, asynchronousmodel. Therefore, JavaScript’s server program is not waiting for a func-
tion’s or an API’s return data to start serving another request. However, when a function or
API call returns the request’s data, Node.js uses a notification mechanism to send immedi-
ately back data to the client. Therefore, compared to all the other implementations, Node.js
fully utilises its execution time to serve client requests through its asynchronous nature and
having less wait-like system calls during execution time.

By examining only the system calls of IPC implementations, we cannot always have a
clear picture of their energy and run-time performance implications. For instance, Go im-
plementations spend an important amount of time in kernel space; nevertheless, they are
among themost energy and run-time performance-efficient implementations. This suggests

1https://nodejs.org/api/addons.html

https://nodejs.org/api/addons.html


97 / 130 5.3. SAFEGUARDS FINDINGS

that the type of system calls can affect the energy and run-time performance of IPC imple-
mentations.

5.3 Safeguards Findings
In this section, we discuss the factors that affect our results regarding the diverse security
mechanisms.

5.3.1 CPU Vulnerability Patches and GCC Safeguards
According to the related work [145], the main reason of performance decline caused by the
CPU vulnerability patches is the flushing of buffers after context-switching. Specifically, the
flushing occurs in order to clean stale data from buffers to avoid data leakage through side-
channel attacks. By using the Linux time command, we obtained measurements regarding
the time that each benchmark spent inside the user- and kernel-space.2 Our results suggest
that the benchmarks with the highest performance deterioration, most of the times, were
the ones that spent more time in kernel-space. This shows that the specific benchmarks
invoked many system calls which cause context-switches and thus buffers flushing.

Apart from the performance cost of flushing buffers, there is another reason that may
cause performance degradation to our benchmarks. The Meltdown vulnerability patch is
flushing the Translation Lookaside Buffers (TLBs) for each switching between the kernel- and
user-space. Note that flushing TLBs, increases the number of TLB load misses [145, 28].
This, in turn, leads to a severe performance degradation due to expensive memory accesses,
which result in an additional energy and run-time performance overhead. Regarding the
Spectre vulnerability, Intel has updated the processors’ microcode to flush out the Branch
Target Buffers (BTB) after a branch misprediction. Flushing out BTBs reduces drastically the
prediction rate of branches. Therefore, the CPU is forced to discard data for the associated
mispredictions and waste resources executing unneeded instructions [145, 28]. In a simi-
lar manner, MDS vulnerability patch flushes out stale data from different CPU buffers (i.e.,
line-fill buffers, store buffers, and load ports) that may have been loaded from previous op-
erations [28].

We found that the associated GCC safeguards can affect many of the examined bench-
marks. However, compared to the CPU vulnerability patches, GCC safeguards seem to have
a much lower overall energy and run-time performance impact. Yet, we have found that
the guard stack can affect significantly the energy consumption and run-time performance
of selected applications. This stems from the fact that the corresponding tasks (affected
the most from the guard stack) invoked many functions with guard stack protection which
perform checks against buffer overflow attacks. This resulted in energy and run-time
performance degradation for the associated tasks.

2https://github.com/stefanos1316/resultsForEECSE20/tree/master/mitigations/kernelspace

https://github.com/stefanos1316/resultsForEECSE20/tree/master/mitigations/kernelspace


Chapter 6

Conclusions and Future Work

This thesis presents ways to achieve energy and run-time performance bymaking the proper
selection for developing an application. In this chapter, we discuss this thesis contributions
and future research directions.

6.1 Contributions of the Thesis
In this section, we summarise the contributions offered by this thesis. We first discuss the
research- and then the development-oriented contributions for each of our studies.

In our survey study, we identified and discussed several research challenges. Such chal-
lenges could serve as a starting point to further improve the field of energy efficiency in
software development. For developers, we point out available tools, with their features and
limitations, that can be used tomeasure an application’s energy consumption. Moreover, we
discuss techniques and practices that can help reduce an application’s energy consumption.

By investigating different programming languages, we identified which ones can con-
tribute to better energy and run-time performance for specific programming tasks. We also
examined how our results vary among different computer platforms and showed that there
is no single winner for all cases. For developing purposes, we offer a programming language-
based ranking catalogue of nine heatmaps 1 (three for each of server, laptop, and embedded
system) showing the EDP implications of 14 programming languages against 25 generic pro-
gramming tasks from Rosetta Code. These heatmaps could act as a guide on programming
language selection for software practitioners seeking to gain energy and run-time perfor-
mance when developing on a particular computer platform. Moreover, we offer publicly the
dataset of the 25 tasks written in 14 programming languages along with the execution scripts
that can be used as benchmarks for similar studies. Nevertheless, we advise developers in
using the following:

• C for the development of computationally-intensive and concurrent applications

• Go for memory-intensive program that involves a lot of sorting

• Rust for I/O-intensive computer applications

• JavaScript for tasks that involve heavy string processing based on regular expressions
1see Appendix
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• C++ for functional programming tasks

Furthermore, we performed an empirical study over diverse remote IPC technologies im-
plemented in different programming languages to appraise their energy and run-time per-
formance. Our results highlight JavaScript’s and Go’s implementations as the most energy-
and run-time performance-efficient compared to PHP, Java, C#, Python, and Ruby. More-
over, we found that certain web-frameworks overuse system resources (through system
calls) which implies reduced performance. Nevertheless, we have shown that the energy
and run-time performance of the investigated IPC technologies are not necessarily propor-
tional. Researchers can build on our study by comparing different web frameworks, using
additional test cases, different database systems, and applying our findings in a real-world
micro-services applications to evaluate their performance. Software practitioners can bene-
fit from our study by noting the following.

• Energy consumption and run-time performance can vary significantly among different
programming language implementations; therefore, making the right selection of IPC
can benefit the applications’ energy consumption.

• Neither thememory usage nor the number of context-switches can indicate the energy
or run-time performance of a library’s efficiency.

We studied how several security mechanisms affect the energy and run-time perfor-
mance of multiple applications and utilities. Our results suggest that security mechanisms
do not come for free because they use up a considerable amount of energy and degrade
run-time performance. Specifically, we found that CPU vulnerability patches increase the
energy consumption and execution time of many real-word applications such as Apache,
Nginx, and Redis. Likewise, the use of HTTP, instead of HTTPS in a secure environment, can
reduce energy consumption and execution time by 56.66% and 55.92%, respectively. Simi-
larly, doing away thememory zeroing can decrease the energy and increase the run-timeper-
formance of memory-bound applications up to 4.5%, on average. Finally, disabling compiler
safeguards can lower the energy consumption of compute-intensive, imaging, and rendering
benchmarks. Moreover, we found that the energy consumption is not always proportional
to run-time performance.

To this end, we believe that many applications can benefit from energy savings and in-
creased run-time performance by turning off diverse security mechanisms. However, this
approach is only appropriate in a suitably sanitized, secure, and monitored environment,
where activity by malicious users is an unlikely possibility. Creating such environments is dif-
ficult and expensive, but not impossible. For many good reasons organizations running large
cloud data centers are already operating their core computing infrastructures inside secure
perimeters [76, 77]. Given their huge scale, these same facilities are also excellent targets for
achieving substantial energy savings and reducing CO2 emissions by adopting the measures
we propose.

6.2 Future Work
The findings presented in this thesis open new research directions in the context of energy-
efficient practices in software engineering. The opportunities for futurework, whichwe have
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identified, focus on four directions: (1) define rules to perform empirical studies for mobile
applications energy efficiency, (2) energy and run-time performance evolution of Linux core
tools and system calls, (3) investigation of software architecture styles energy requirements,
and (4) search-based software engineering for database systems data structures.

When performing empirical studies to examine the energy consumption in software
engineering, many researchers follow different approaches suggested by others or personal
experience. However, the same guidelines do not apply to all cases (Cloud, IoT, controlled
environment, etc.) or computer systems (workstation, server, smartphone, embedded,
and so on). To this end, we present a number of research questions that may formulate an
empirical study regarding energy efficiency in the context of mobile applications. Note that
the questions below can be also asked for different computer platforms.

• What are the publication trends of empirical studies on the energy con-
sumption of mobile apps?

• What is the state of the art in relation to rigor and relevance of empirical
studies on the energy consumption of mobile apps?

• Whichmetrics are consideredwhen conducting empirical studies on the
energy consumption of mobile apps?

• Which are the appropriate guidelines for researchers when conducting
empirical studies on the energy consumption of mobile apps?

• What are the main emerging challenges for future empirical research
on energy consumption of mobile apps?

Unix-like OS and its kernel have evolved tremendously over the years and it is considered
among the most successful software. A study to appraise the energy and run-time impli-
cations of the Unix-like OS core operations and tools to point out the reasons behind their
fluctuations during the evolution of its software could help OS developers and software
practitioners to better understand the energy consumption of their design or implemen-
tation decisions. Such a study is important because, by identifying energy hogs in OS and
solving them, it directly impacts the energy consumption of many computer systems such
as workstations, embedded systems, and smartphones.

• What are the energy and run-time performance implications regarding
the evolution of in Unix-like OS tools over the years?

• What are the energy and run-time performance implications regarding
the evolution of in Unix-like OS system calls over the years?

Search-Based Software Engineering (SBSE) is a well-established research area that helps
in solving effectively software engineering problems by using search and optimisation
algorithms. However, the selection of appropriate data structures and the resulting energy
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efficiency improvements is a topic that has not been studied in the context of SBSE. For
instance, most cyber-physical systems and cloud computing applications make use of
database systems to retrieve data. In order to offer high performance, the database systems
are using indexes to fetch data without searching all table rows. An application of SBSE
here could help to point out which data structures to use in a database system’s indexing
mechanism in order to increase its energy savings. However, this can be also applied in a
variety of other applications.

• What are the energy and run-time performance gains of different data
structures in the context of database systems indexing?

• Can the same data structures offer energy and run-time performance
gains on different database systems?

Selecting the suitable software architecture styles (SAS) for a project mainly depends on
its requirements. However, there is very little knowledge regarding the energy consumption
of different SAS. For instances, many tech-giants are migrating their applications to micro-
services SAS to make their software scalable, reliable, polyglot, and so on. Such a fact may
increase energy consumption due to the increased use of the network layer for services
communication. However, many other SAS may offer reduced energy consumption and
even better run-time performance. Therefore, investigating various SAS and their trade-off
could help us suggest solutions, or even make changes in some of the most popular SAS to
increase their energy and run-time performance. Moreover, such research could help to
reduce the energy consumption of applications running in the cloud, IoT infrastructures,
or hyper-physical systems if adopted in the early stage of the software development life cycle.

• Which are the most energy- and run-time performance-efficient among
the selected SAS?

• Which changes can help in reducing the energy consumption and exe-
cution time of the selected SAS?

• Which are the reasons thatmake specific SASmore energy and run-time
performance-efficient than others?
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Figure A.1: Embedded System’s EDP with Weighted Function 1 (Energy Efficiency)
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Figure A.2: Embedded System’s EDP with Weighted Function 2 (Balanced)



105
/130

synch.-conc.
inher.-single
file-I/O
inher.-multi.
json
factorial
ackermann
regex
insertion
selection
bubble
huffman
url-encode
array
num.-integ.
palindrome
classes
conc.-comp.
quick
obj-meth.
exp.-operat.
merge
url-decode
lzw-compr.
func.-comp.

Programming Tasks

C

C++

Go

Rust

JavaScript

C#

VB.Net

PHP

Ruby

Python

Perl

Java

Swift

R

Pr
og

ra
m

m
in

g 
La

ng
ua

ge
s

0 1.2 1.05 0.49 0.3 4.08 0.42 1.11 0.98 0 1.94 0 0.43 0.61 0 0 0.63 0 0 4.22 0 4.23 8.13

0 0 0.81 0.18 4.62 0.55 0.31 2.83 0.93 1.6 0.69 2.77 1.63 0.41 1.21 4.03 2.83 8.06 0.96 0 1.95 3.43 1.91 9.54 0

0.19 0.04 2.41 0.3 0 7.09 0.07 0 0 2.7 6.82 4.13 0.85 5.51 2.71 0.43 0 4.02 3.45 0 7.34 8.89 10.64

0.04 0 0 4.6 0.81 0.3 4.13 6.05 4.76 4.14 1.54 3.86 0 5.67 3.6 7.34 5.75 7.11 0 8.67 6.6 0 4.7

4.47 4.18 13.3 3.61 1.89 1.48 0 0 0.79 1.54 3.54 1.17 3.36 3.52 4.47 0 6.1 1.27 4.09 7.21 6.44 4.38 6.45

0.08 0.2 0.25 1.66 2.38 1.69 6.56 1.6 0.63 0.11 3.7 3.22 3.96 4.38 4.68 3.66 4.11 0.4 9.15 6.96 5.02 7.94 7.64 10.48

0.18 0.25 1.33 0.91 1.69 4 5.84 0.95 0.94 0.16 9.84 4.6 3.84 8.45 0 6.84 4.74 5.79 0.01 6.83 5.61 9.78 7.72

0.1 0.23 0.31 7.56 7.42 0.36 7.72 7.83 7.05 3.77 0 4.75 7.74 4.17 6.67 8.18 10.13 8.43 11.31 5.4 6.54 8.42

0.1 0.09 0.03 0 4.4 6.93 6.18 1.53 6.46 7.94 6.7 5.81 4.22 5.22 6.87 4.51 7 6.22 7.52 9.75 13.17 9.38 10.42 9.49 9.55

0.28 0.06 0.33 0.6 3.91 6.58 7.54 3.42 5.86 7.18 7.21 4.09 5.11 5.73 8.33 4.57 8.92 6.18 7.44 11.12 13.53 9.07 9.99 8.92 9

1.06 0.1 0.29 0.36 1.47 7.45 6.56 1.58 6.72 6.57 5.79 5.05 1.03 6.49 9.77 8.38 10.06 10.29 6.61 10.01 12.22 10.2 8.17 9.68 10.4

0 1.89 3.69 1.84 8.15 4.97 5.04 7.76 4.17 4.66 5.12 3 7.97 7.17 6.23 6.69 5.28 6.07 4.37 10.47 9.18 7.71 12.59 11.45 13.69

3.56 5.61 3.55 6.84 0 0.39 6.98 5.48 5 7.93 4.92 7.01 7.54 6.33 8.18 4.42 3.53 10.01 4.78 6.73 11.26 9.56 15.96 12.81

2.01 1.6 4.97 6.31 10.15 6.28 10.78 7.81 10.14 6.67 14.28 8.48 3.05 8.08 10.43 8.93 11.31 13.54 13.3 10.32 10.32

Energy Delay Product: Weight 3 (Performance Efficiency)
0

2

4

6

8

10

12

14

Figure A.3: Embedded System’s EDP with Weighted Function 3 (Performance Efficiency)
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Figure A.4: Laptop’s EDP with Weighted Function 1 (Energy Efficiency)
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Figure A.5: Laptop’s EDP with Weighted Function 2 (Balanced)
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Figure A.6: Laptop’s EDP with Weighted Function 3 (Performance Efficiency)
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Figure A.7: Server’s EDP with Weighted Function 1 (Energy Efficiency)
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Figure A.8: Server’s EDP with Weighted Function 2 (Balanced)
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Figure A.9: Server’s EDP with Weighted Function 3 (Performance Efficiency)



Bibliography

[1] TIOBE Index | TIOBE - The Software Quality Company, 2017. [Online]. Available: =
https://www.tiobe.com/tiobe-index/. [Accessed: 2017-09-12].

[2] How fast is Redis? – Redis, 2018. URL https://redis.io/topics/benchmarks.

[3] Usage Statistics and Market Share of Linux for Websites, December 2019, 2019. URL
https://w3techs.com/technologies/details/os-linux.

[4] S. Abdulsalam, D. Lakomski, Q. Gu, T. Jin, and Z. Zong. Program energy efficiency:
The impact of language, compiler and implementation choices. In Green Computing
Conference (IGCC), 2014 International, pages 1–6, November 2014. doi: 10.1109/
IGCC.2014.7039169.

[5] S. Abdulsalam, Z. Zong, Q. Gu, and Meikang Qiu. Using the greenup, powerup, and
speedup metrics to evaluate software energy efficiency. In 6th International Green
and Sustainable Computing Conference, IGSC ’15, pages 1–8, Dec 2015. doi: 10.1109/
IGCC.2015.7393699.

[6] Acmeism. RosettaCodeData: RosettaCode Data Project, nov 2017. URL https:
//github.com/acmeism/RosettaCodeData.

[7] K. Aggarwal, A. Hindle, and E. Stroulia. GreenAdvisor: A tool for analyzing the impact
of software evolution on energy consumption. In 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages 311–320, September 2015.
doi: 10.1109/ICSM.2015.7332477.

[8] Karan Aggarwal, Chenlei Zhang, Joshua Charles Campbell, Abram Hindle, and Eleni
Stroulia. The Power of System Call Traces: Predicting the Software Energy Consump-
tion Impact of Changes. In Proceedings of 24th Annual International Conference on
Computer Science and Software Engineering, CASCON ’14, pages 219–233, Riverton,
NJ, USA, 2014. IBM Corp.

[9] G. Agosta, M. Bessi, E. Capra, and C. Francalanci. Dynamic memoization for energy
efficiency in financial applications. In 2011 International Green Computing Conference
and Workshops, pages 1–8, July 2011. doi: 10.1109/IGCC.2011.6008559.

[10] Wonsun Ahn, Jiho Choi, Thomas Shull, María J. Garzarán, and Josep Torrellas. Improv-
ing JavaScript performance by deconstructing the type system. ACM SIGPLAN Notices,
49(6):496–507, June 2014. ISSN 0362-1340. doi: 10.1145/2666356.2594332. URL
https://doi.org/10.1145/2666356.2594332.

112

=
https://redis.io/topics/benchmarks
https://w3techs.com/technologies/details/os-linux
https://github.com/acmeism/RosettaCodeData
https://github.com/acmeism/RosettaCodeData
https://doi.org/10.1145/2666356.2594332


113 / 130 BIBLIOGRAPHY

[11] Anders S. G. Andrae and Tomas Edler. On Global Electricity Usage of Communication
Technology: Trends to 2030. Challenges, 6(1):117–157, June 2015. doi: 10.3390/
challe6010117. URL https://www.mdpi.com/2078-1547/6/1/117.

[12] Anys Bacha and Radu Teodorescu. Dynamic Reduction of Voltage Margins by Lever-
aging On-chip ECC in Itanium II Processors. In Proceedings of the 40th Annual Inter-
national Symposium on Computer Architecture, ISCA ’13, pages 297–307, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2079-5. doi: 10.1145/2485922.2485948. URL
http://doi.acm.org/10.1145/2485922.2485948.

[13] Anys Bacha and Radu Teodorescu. Using ECC Feedback to Guide Voltage Speculation
in Low-Voltage Processors. In Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-47, pages 306–318, Washington, DC, USA,
2014. IEEE Computer Society. ISBN 978-1-4799-6998-2. doi: 10.1109/MICRO.2014.54.
URL http://dx.doi.org/10.1109/MICRO.2014.54.

[14] Woongki Baek and Trishul M. Chilimbi. Green: A Framework for Supporting Energy-
conscious Programming Using Controlled Approximation. In Proceedings of the 31st
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’10, pages 198–209, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0019-3.
doi: 10.1145/1806596.1806620.

[15] Peter Bailey. Watts Up Pro power meter interface utility for Linux, September 2017.
URL https://github.com/pyrovski/watts-up.

[16] Jayant Baliga, Robert Ayre, Kerry Hinton, and Rodney S. Tucker. Energy consumption
in wired and wireless access networks. IEEE Communications Magazine, 49(6):70–77,
June 2011. ISSN 1558-1896. doi: 10.1109/MCOM.2011.5783987.

[17] Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay, and Abhik Roychoudhury.
Detecting Energy Bugs and Hotspots in Mobile Apps. In Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2014,
pages 588–598, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3056-5. doi: 10.
1145/2635868.2635871.

[18] Mohamed Amine Beghoura, Abdelhak Boubetra, and Abdallah Boukerram. Green
software requirements and measurement: random decision forests-based software
energy consumption profiling. Requirements Engineering, pages 1–14, July 2015. ISSN
0947-3602, 1432-010X. doi: 10.1007/s00766-015-0234-2.

[19] J. Martin Bland and Douglas G. Altman. Multiple significance tests: the Bonferroni
method. BMJ, 310(6973):170, January 1995. ISSN 0959-8138, 1468-5833. doi: 10.
1136/bmj.310.6973.170. URL https://www.bmj.com/content/310/6973/170.

[20] Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded Computations
by Work Stealing. J. ACM, 46(5):720–748, September 1999. ISSN 0004-5411. doi:
10.1145/324133.324234. URL http://doi.acm.org/10.1145/324133.324234.

https://www.mdpi.com/2078-1547/6/1/117
http://doi.acm.org/10.1145/2485922.2485948
http://dx.doi.org/10.1109/MICRO.2014.54
https://github.com/pyrovski/watts-up
https://www.bmj.com/content/310/6973/170
http://doi.acm.org/10.1145/324133.324234


114 / 130 BIBLIOGRAPHY

[21] A. E. Husain Bohra and V. Chaudhary. VMeter: Power modelling for virtualized
clouds. In 2010 IEEE International Symposium on Parallel Distributed Processing,
Workshops and Phd Forum (IPDPSW), pages 1–8, April 2010. doi: 10.1109/IPDPSW.
2010.5470907.

[22] J. Bornholt, T.Mytkowicz, and K. S.McKinley. Themodel is not enough: Understanding
energy consumption in mobile devices. In 2012 IEEE Hot Chips 24 Symposium (HCS),
pages 1–3, August 2012.

[23] A. Bourdon, A. Noureddine, R. Rouvoy, and L. Seinturier. PowerAPI: A
Software Library to Monitor the Energy Consumed at the Process-Level,
2012. [Online]. Available: https://ercim-news.ercim.eu/en92/special/
powerapi-a-software-library-to-monitor-the-energy-consumed-at-the-process-level.
[Accessed: 2016-06-13].

[24] Gerome Bovet and Jean Hennebert. Communicating With Things - An Energy Con-
sumption Analysis. In 2012 IEEE Tenth International Conference on Pervasive Comput-
ing (Pervasive ’2012), June 2012.

[25] D. Branco and P. R. Henriques. Impact of GCC optimization levels in energy consump-
tion during C/C++ program execution. In 2015 IEEE 13th International Scientific Con-
ference on Informatics, pages 52–56, November 2015. doi: 10.1109/Informatics.2015.
7377807.

[26] Christian Bunse, Zur Schwedenschanze, and Sebastian Stiemer. On the energy con-
sumption of design patterns. In Proceedings of the 2nd Workshop EASED@ BUIS En-
ergy Aware Software-Engineering and Development, pages 7–8. Citeseer, 2013.

[27] Q. Cai, J. González, G. Magklis, P. Chaparro, and A. González. Thread shuffling: Com-
bining DVFS and thread migration to reduce energy consumptions for multi-core sys-
tems. In Low Power Electronics and Design (ISLPED) 2011 International Symposium
on, pages 379–384, August 2011. doi: 10.1109/ISLPED.2011.5993670.

[28] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, MarinaMinkin,
Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo Van Bulck, and Yu-
val Yarom. Fallout: Leaking data on meltdown-resistant cpus. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, CCS ’19,
page 769–784, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450367479. doi: 10.1145/3319535.3363219. URL https://doi.org/10.1145/
3319535.3363219.

[29] Eugenio Capra, Chiara Francalanci, and Sandra A. Slaughter. Is Software ”Green”?
Application Development Environments and Energy Efficiency in Open Source Appli-
cations. Inf. Softw. Technol., 54:60–71, January 2012. ISSN 0950-5849.

[30] Tim Caswell, nov 2017. URL https://github.com/creationix/libco.

[31] Tim Caswell. nvm: Node Version Manager - Simple bash script to manage multiple
active node.js versions, jan 2018. URL https://github.com/creationix/nvm.

https://ercim-news.ercim.eu/en92/special/powerapi-a-software-library-to-monitor-the-energy-consumed-at-the-process-level
https://ercim-news.ercim.eu/en92/special/powerapi-a-software-library-to-monitor-the-energy-consumed-at-the-process-level
https://doi.org/10.1145/3319535.3363219
https://doi.org/10.1145/3319535.3363219
https://github.com/creationix/libco
https://github.com/creationix/nvm


115 / 130 BIBLIOGRAPHY

[32] C. L. Chamas, D. Cordeiro, and M. M. Eler. Comparing REST, SOAP, Socket and gRPC in
computation offloading of mobile applications: An energy cost analysis. In 2017 IEEE
9th Latin-American Conference on Communications (LATINCOM), pages 1–6, Novem-
ber 2017.

[33] X. Chen and Z. Zong. Android App Energy Efficiency: The Impact of Language,
Runtime, Compiler, and Implementation. In 2016 IEEE International Confer-
ences on Big Data and Cloud Computing (BDCloud), Social Computing and Net-
working (SocialCom), Sustainable Computing and Communications (SustainCom)
(BDCloud-SocialCom-SustainCom), pages 485–492, October 2016. doi: 10.1109/
BDCloud-SocialCom-SustainCom.2016.77.

[34] Y. K. Chen, J. Chhugani, P. Dubey, C. J. Hughes, D. Kim, S. Kumar, V.W. Lee, A. D. Nguyen,
and M. Smelyanskiy. Convergence of Recognition, Mining, and Synthesis Workloads
and Its Implications. Proceedings of the IEEE, 96(5):790–807, May 2008. ISSN 0018-
9219. doi: 10.1109/JPROC.2008.917729.

[35] Shaiful Alam Chowdhury and AbramHindle. GreenOracle: Estimating Software Energy
Consumption with Energy Measurement Corpora. In Proceedings of the 13th Interna-
tional Conference on Mining Software Repositories, MSR ’16, pages 49–60, New York,
NY, USA, 2016. ACM. ISBN 978-1-4503-4186-8. doi: 10.1145/2901739.2901763. URL
http://doi.acm.org/10.1145/2901739.2901763.

[36] Maxime Colmant, Mascha Kurpicz, Pascal Felber, Loïc Huertas, Romain Rouvoy, and
Anita Sobe. Process-level Power Estimation in VM-based Systems. In Proceedings of
the Tenth European Conference on Computer Systems, EuroSys ’15, pages 14:1–14:14,
New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3238-5. doi: 10.1145/2741948.
2741971.

[37] Luis Corral, Anton B. Georgiev, Alberto Sillitti, and Giancarlo Succi. Can Execution Time
Describe Accurately the Energy Consumption of Mobile Apps? An Experiment in An-
droid. In Proceedings of the 3rd International Workshop on Green and Sustainable
Software, GREENS 2014, pages 31–37, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2844-9. doi: 10.1145/2593743.2593748. URL http://doi.acm.org/10.1145/
2593743.2593748. event-place: Hyderabad, India.

[38] Ivan Tomas Cotes-Ruiz, Rocio P. Prado, Sebastian Garcia-Galan, Jose Enrique Munoz-
Exposito, and Nicolas Ruiz-Reyes. Dynamic Voltage Frequency Scaling Simulator for
Real Workflows Energy-Aware Management in Green Cloud Computing. PLOS ONE,
12(1):e0169803, January 2017. ISSN 1932-6203. doi: 10.1371/journal.pone.0169803.
URL https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169803.

[39] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole, Peat
Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. StackGuard: au-
tomatic adaptive detection and prevention of buffer-overflow attacks. In Proceedings
of the 7th conference on USENIX Security Symposium - Volume 7, SSYM’98, page 5, San
Antonio, Texas, January 1998. USENIX Association.

http://doi.acm.org/10.1145/2901739.2901763
http://doi.acm.org/10.1145/2593743.2593748
http://doi.acm.org/10.1145/2593743.2593748
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169803


116 / 130 BIBLIOGRAPHY

[40] Thurston H. Y. Dang, Petros Maniatis, and David A. Wagner. The Performance Cost
of Shadow Stacks and Stack Canaries. In ASIA CCS ’15, 2015. doi: 10.1145/2714576.
2714635.

[41] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le. Rapl: Memory power
estimation and capping. In 2010 ACM/IEEE International Symposium on Low-Power
Electronics and Design (ISLPED), pages 189–194, Aug 2010. doi: 10.1145/1840845.
1840883.

[42] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Christian Le.
RAPL: Memory Power Estimation and Capping. In Proceedings of the 16th ACM/IEEE
International Symposiumon LowPower Electronics andDesign, ISLPED ’10, pages 189–
194, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0146-6. doi: 10.1145/1840845.
1840883. URL http://doi.acm.org/10.1145/1840845.1840883.

[43] Spencer Desrochers, Chad Paradis, and Vincent M. Weaver. A validation of dram
rapl power measurements. In Proceedings of the Second International Symposium on
Memory Systems, MEMSYS ’16, page 455–470, New York, NY, USA, 2016. Association
for Computing Machinery. ISBN 9781450343053. doi: 10.1145/2989081.2989088.
URL https://doi.org/10.1145/2989081.2989088.

[44] Developer.android. AndroidNDK |Android Developers, 2018. URL https://developer.
android.com/ndk/index.html.

[45] Dario Di Nucci, Fabio Palomba, Antonio Prota, Annibale Panichella, Andy Zaidman, and
Andrea De Lucia. Software-Based Energy Profiling of Android Apps: Simple, Efficient
and Reliable? Software Analysis Evolution and Reengineering (SANER), February 2017.
URL http://orbilu.uni.lu/handle/10993/29378.

[46] Die.net. strace(1): trace system calls/signals - Linux man page, jan 2018. URL https:
//linux.die.net/man/1/strace.

[47] Die.net. time(1) - Linux man page, jan 2018. URL https://linux.die.net/man/1/time.

[48] K. Eder. Energy transparency from hardware to software. In 2013 Third Berkeley
Symposium on Energy Efficient Electronic Systems (E3S), pages 1–2, oct 2013. doi:
10.1109/E3S.2013.6705855.

[49] eLinux. RPI vcgencmd usage - eLinux.org, aug 2017. URL https://elinux.org/RPI_
vcgencmd_usage.

[50] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural Acceleration for General-
Purpose Approximate Programs. In 2012 45th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 449–460, December 2012. doi: 10.1109/MICRO.
2012.48.

[51] M.A. Ferreira, E. Hoekstra, B. Merkus, B. Visser, and J. Visser. Seflab: A lab for mea-
suring software energy footprints. In 2013 2nd International Workshop on Green and
Sustainable Software (GREENS), pages 30–37, May 2013.

http://doi.acm.org/10.1145/1840845.1840883
https://doi.org/10.1145/2989081.2989088
https://developer.android.com/ndk/index.html
https://developer.android.com/ndk/index.html
http://orbilu.uni.lu/handle/10993/29378
https://linux.die.net/man/1/strace
https://linux.die.net/man/1/strace
https://linux.die.net/man/1/time
https://elinux.org/RPI_vcgencmd_usage
https://elinux.org/RPI_vcgencmd_usage


117 / 130 BIBLIOGRAPHY

[52] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving the
Design of Existing Code. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999. ISBN 0-201-48567-2.

[53] Hot Frameworks. Web framework rankings | HotFrameworks, May 2018. URL https:
//hotframeworks.com/.

[54] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: El-
ements of Reusable Object-oriented Software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995. ISBN 978-0-201-63361-0.

[55] Stefanos Georgiou. Rosetta_code_research_msr: Exploiting Programming Languages
Energy Consumption, mar 2018. URL https://github.com/stefanos1316/Rosetta_
Code_Research_MSR/Scripts.

[56] Stefanos Georgiou and Diomidis Spinellis. Energy-Delay Investigation of Remote Inter-
Process Communication Technologies. Journal of Systems and Software, page 110506,
December 2019. ISSN 0164-1212. doi: 10.1016/j.jss.2019.110506. URL http://www.
sciencedirect.com/science/article/pii/S0164121219302808.

[57] Johann Groszschadl, Stefan Tillich, Christian Rechberger, Michael Hofmann, and Mar-
cel Medwed. Energy Evaluation of Software Implementations of Block Ciphers un-
der Memory Constraints. In 2007 Design, Automation & Test in Europe Conference
& Exhibition, pages 1–6, Nice, France, April 2007. IEEE. ISBN 9783981080124. doi:
10.1109/DATE.2007.364443. URL http://ieeexplore.ieee.org/document/4211953/.

[58] Jakob Gruber. Speeding up V8 Regular Expressions, jan 2018. URL https://v8project.
blogspot.com/2017/01/speeding-up-v8-regular-expressions.html.

[59] Richard F. Gunst and Robert L. Mason. Fractional factorial design. WIREs Computa-
tional Statistics, 1(2):234–244, 2009. ISSN 1939-0068. doi: 10.1002/wics.27. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.27.

[60] Michael Hablich. v8: The official mirror of the V8 Git repository, jan 2018. URL https:
//github.com/v8/v8/wiki/Design-Elements.

[61] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan. Estimating mobile application energy
consumption using program analysis. In 2013 35th International Conference on Soft-
ware Engineering (ICSE), pages 92–101, May 2013. doi: 10.1109/ICSE.2013.6606555.

[62] IJ Haratcherev, GP Halkes, TEV Parker, OWVisser, and KG Langendoen. PowerBench: A
Scalable Testbed Infrastructure for Benchmarking Power Consumption, pages 37–44.
s.n., 2008. ISBN 978-90-9023209-6.

[63] Samir Hasan, Zachary King, Munawar Hafiz, Mohammed Sayagh, Bram Adams, and
Abram Hindle. Energy Profiles of Java Collections Classes. In Proceedings of the 38th
International Conference on Software Engineering, ICSE ’16, pages 225–236, NewYork,
NY, USA, 2016. ACM. ISBN 978-1-4503-3900-1.

https://hotframeworks.com/
https://hotframeworks.com/
https://github.com/stefanos1316/Rosetta_Code_Research_MSR/Scripts
https://github.com/stefanos1316/Rosetta_Code_Research_MSR/Scripts
http://www.sciencedirect.com/science/article/pii/S0164121219302808
http://www.sciencedirect.com/science/article/pii/S0164121219302808
http://ieeexplore.ieee.org/document/4211953/
https://v8project.blogspot.com/2017/01/speeding-up-v8-regular-expressions.html
https://v8project.blogspot.com/2017/01/speeding-up-v8-regular-expressions.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.27
https://github.com/v8/v8/wiki/Design-Elements
https://github.com/v8/v8/wiki/Design-Elements


118 / 130 BIBLIOGRAPHY

[64] Hesham H. M. Hassan, Ahmed Shawky Moussa, and Ibrahim Farag. Performance vs.
Power and Energy Consumption: Impact of Coding Style and Compiler. International
Journal of Advanced Computer Science and Applications (IJACSA), 8(12), 2017. doi:
10.14569/IJACSA.2017.081217. URL https://thesai.org/Publications/ViewPaper?
Volume=8&Issue=12&Code=IJACSA&SerialNo=17.

[65] Alexander A. Hernandez and Sherwin E. Ona. A Qualitative Study of Green IT Adop-
tion Within the Philippines Business Process Outsourcing Industry: A Multi-Theory
Perspective. Int. J. Enterp. Inf. Syst., 11(4):28–62, October 2015. ISSN 1548-1115. doi:
10.4018/IJEIS.2015100102. URL http://dx.doi.org/10.4018/IJEIS.2015100102.

[66] V. Herwig, R. Fischer, and P. Braun. Assessment of REST and WebSocket in regards to
their energy consumption for mobile applications. In 2015 IEEE 8th International Con-
ference on Intelligent Data Acquisition and Advanced Computing Systems: Technology
and Applications (IDAACS), volume 1, pages 342–347, September 2015.

[67] Abram Hindle, Alex Wilson, Kent Rasmussen, E. Jed Barlow, Joshua Charles Campbell,
and Stephen Romansky. GreenMiner: A Hardware Based Mining Software Reposito-
ries Software Energy Consumption Framework. In Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR 2014, pages 12–21, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2863-0.

[68] Timo Honig, Heiko Janker, Christopher Eibel, Oliver Mihelic, and Rüdiger Kapitza.
Proactive Energy-Aware Programming with PEEK. 2014.

[69] M. Horowitz, T. Indermaur, and R. Gonzalez. Low-power digital design. In Proceedings
of 1994 IEEE Symposium on Low Power Electronics, pages 8–11, October 1994. doi:
10.1109/LPE.1994.573184.

[70] HP. HP EliteBook 840 G3 Notebook PC| HP® United States, Mar 2018. URL http:
//www8.hp.com/us/en/products/laptops/product-detail.html?oid=7815294.

[71] GitHub Info. GitHut - Programming Languages and GitHub, June 2018. URL http:
//githut.info/.

[72] Melanie Kambadur and Martha A. Kim. An Experimental Survey of Energy Manage-
ment Across the Stack. In Proceedings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages & Applications, OOPSLA ’14, pages
329–344, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2585-1.

[73] Karan Aggarwal. The Power of System Call Traces: Predicting the Software Energy
Impact of Changes. November 2014. URL http://archive.org/details/Cascon2014.

[74] Richard Kavanagh and Karim Djemame. Rapid and accurate energy models through
calibration with ipmi and rapl. Concurrency and Computation: Practice and Experi-
ence, 31(13):e5124, 2019. doi: 10.1002/cpe.5124. URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/cpe.5124. e5124 cpe.5124.

[75] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K. Nurminen, and Zhonghong
Ou. Rapl in action: Experiences in using rapl for power measurements. ACM

https://thesai.org/Publications/ViewPaper?Volume=8&Issue=12&Code=IJACSA&SerialNo=17
https://thesai.org/Publications/ViewPaper?Volume=8&Issue=12&Code=IJACSA&SerialNo=17
http://dx.doi.org/10.4018/IJEIS.2015100102
http://www8.hp.com/us/en/products/laptops/product-detail.html?oid=7815294
http://www8.hp.com/us/en/products/laptops/product-detail.html?oid=7815294
http://githut.info/
http://githut.info/
http://archive.org/details/Cascon2014
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5124
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5124


119 / 130 BIBLIOGRAPHY

Trans. Model. Perform. Eval. Comput. Syst., 3(2), March 2018. ISSN 2376-3639. doi:
10.1145/3177754. URL https://doi.org/10.1145/3177754.

[76] Won Kim and S. Korea. Computing: Today and tomorrow. Journal of Object Technol-
ogy, pages 65–72, 2009.

[77] Won Kim, Soo Dong Kim, Eunseok Lee, and Sungyoung Lee. Adoption issues for cloud
computing. In Proceedings of the 7th International Conference on Advances in Mo-
bile Computing and Multimedia, MoMM ’09, pages 2–5, Kuala Lumpur, Malaysia, De-
cember 2009. Association for Computing Machinery. ISBN 978-1-60558-659-5. doi:
10.1145/1821748.1821751. URL https://doi.org/10.1145/1821748.1821751.

[78] la.dell. Vostro 470 Mini Tower Desktop Details – Ready For i7 QC Processors | Dell
St. Kitts & Nevis, dec 2017. URL http://www1.la.dell.com/kn/en/corp/Desktops/
vostro-470/pd.aspx?refid=vostro-470&s=corp.

[79] P. Lago, Q. Gu, and P. Bozzelli. A systematic literature review of green softwaremetrics.
2014.

[80] James H. Laros Laros III, Kevin Pedretti, Suzanne M. Kelly, Wei Shu, Kurt Ferreira,
John Van Dyke, and Courtenay Vaughan. Energy-Efficient High Performance Comput-
ing: Measurement and Tuning. SpringerBriefs in Computer Science. Springer-Verlag,
London, 2013. ISBN 978-1-4471-4491-5. doi: 10.1007/978-1-4471-4492-2. URL
https://www.springer.com/gp/book/9781447144915.

[81] J. Leng, A. Buyuktosunoglu, R. Bertran, P. Bose, and V. J. Reddi. Safe limits on voltage
reduction efficiency in GPUs: A direct measurement approach. In 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 294–307,
December 2015. doi: 10.1145/2830772.2830811.

[82] lenovo thinkcentre. ThinkCentre M910 Tower | Power Your Business | Lenovo Aus-
tralia, May 2018. URL https://www3.lenovo.com/au/en/desktops-and-all-in-ones/
thinkcentre/.

[83] Tim Lewis. Openmp home, dec 2017. URL http://www.openmp.org/.

[84] Ding Li and William G. J. Halfond. An Investigation into Energy-saving Programming
Practices for Android Smartphone App Development. In Proceedings of the 3rd Inter-
national Workshop on Green and Sustainable Software, GREENS 2014, pages 46–53,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2844-9. doi: 10.1145/2593743.
2593750. URL http://doi.acm.org/10.1145/2593743.2593750.

[85] Xueliang Li and John P. Gallagher. A Source-level Energy Optimization Framework for
Mobile Applications. In 16th International Working Conference on Source Code Anal-
ysis and Manipulation, Raleigh, North Carolina, USA, October 2016. IEEE Computer
Society.

[86] L. G. Lima, F. Soares-Neto, P. Lieuthier, F. Castor, G. Melfe, and J. P. Fernandes. Haskell
in Green Land: Analyzing the Energy Behavior of a Purely Functional Language. In 2016
IEEE 23rd International Conference on SoftwareAnalysis, Evolution, andReengineering
(SANER), volume 1, pages 517–528, March 2016. doi: 10.1109/SANER.2016.85.

https://doi.org/10.1145/3177754
https://doi.org/10.1145/1821748.1821751
http://www1.la.dell.com/kn/en/corp/Desktops/vostro-470/pd.aspx?refid=vostro-470&s=corp
http://www1.la.dell.com/kn/en/corp/Desktops/vostro-470/pd.aspx?refid=vostro-470&s=corp
https://www.springer.com/gp/book/9781447144915
https://www3.lenovo.com/au/en/desktops-and-all-in-ones/thinkcentre/
https://www3.lenovo.com/au/en/desktops-and-all-in-ones/thinkcentre/
http://www.openmp.org/
http://doi.acm.org/10.1145/2593743.2593750


120 / 130 BIBLIOGRAPHY

[87] Luís Gabriel Lima, Francisco Soares-Neto, Paulo Lieuthier, Fernando Castor, Gilberto
Melfe, and João Paulo Fernandes. On Haskell and energy efficiency. Journal of Systems
and Software, 149:554–580, March 2019. ISSN 0164-1212. doi: 10.1016/j.jss.2018.
12.014.

[88] Jian Lin, Yu-dong Guo, Y. Man, and Shao-Huang Zhou. Executable Program Code Seg-
ment Address Randomization. 2015 International Conference on Computer Science
and Applications (CSA), 2015. doi: 10.1109/CSA.2015.69.

[89] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Rocco Oliveto, Mas-
similiano Di Penta, and Denys Poshyvanyk. Mining Energy-greedy API Usage Pat-
terns in Android Apps: An Empirical Study. In Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR 2014, pages 2–11, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2863-0. doi: 10.1145/2597073.2597085. URL
http://doi.acm.org/10.1145/2597073.2597085.

[90] Jie Liu, Feng Zhao, and Aman Kansal. Virtual Machine Power Metering and Provision-
ing. Microsoft Research, June 2010.

[91] Kenan Liu, Gustavo Pinto, and Yu David Liu. Data-Oriented Characterization of
Application-Level Energy Optimization. In Alexander Egyed and Ina Schaefer, editors,
Fundamental Approaches to Software Engineering, number 9033 in Lecture Notes in
Computer Science, pages 316–331. Springer Berlin Heidelberg, apr 2015. ISBN 978-3-
662-46674-2 978-3-662-46675-9. DOI: 10.1007/978-3-662-46675-9_21.

[92] Irene Manotas, Lori Pollock, and James Clause. SEEDS: A Software Engineer’s Energy-
optimization Decision Support Framework. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 503–514, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2756-5.

[93] Irene Manotas, Christian Bird, Rui Zhang, David Shepherd, Ciera Jaspan, Caitlin Sad-
owski, Lori Pollock, and James Clause. An Empirical Study of Practitioners’ Perspectives
on Green Software Engineering. In Proceedings of the 38th International Conference
on Software Engineering, ICSE ’16, pages 237–248, New York, NY, USA, 2016. ACM.
ISBN 978-1-4503-3900-1.

[94] Junya Michanan, Rinku Dewri, and Matthew J. Rutherford. GreenC5: An adaptive,
energy-aware collection for green software development. Sustainable Computing:
Informatics and Systems, 13:42–60, November 2016. ISSN 2210-5379. doi: 10.
1016/j.suscom.2016.11.004. URL http://www.sciencedirect.com/science/article/
pii/S2210537916300403.

[95] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C. Rinard. Chisel:
Reliability- and Accuracy-aware Optimization of Approximate Computational Kernels.
In Proceedings of the 2014ACM International Conference onObject Oriented Program-
ming Systems Languages & Applications, OOPSLA ’14, pages 309–328, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2585-1.

http://doi.acm.org/10.1145/2597073.2597085
http://www.sciencedirect.com/science/article/pii/S2210537916300403
http://www.sciencedirect.com/science/article/pii/S2210537916300403


121 / 130 BIBLIOGRAPHY

[96] Subrata Mitra, Manish K. Gupta, Sasa Misailovic, and Saurabh Bagchi. Phase-aware
Optimization in Approximate Computing. In Proceedings of the 2017 International
Symposium on Code Generation and Optimization, CGO ’17, pages 185–196, Piscat-
away, NJ, USA, 2017. IEEE Press. ISBN 978-1-5090-4931-8. URL http://dl.acm.org/
citation.cfm?id=3049832.3049853.

[97] Sparsh Mittal and Jeffrey S. Vetter. A Survey of Software Techniques for Using Non-
Volatile Memories for Storage and Main Memory Systems. IEEE Transactions on Par-
allel and Distributed Systems, 27(5):1537–1550, May 2016. ISSN 1045-9219. doi:
10.1109/TPDS.2015.2442980. URL http://ieeexplore.ieee.org/document/7120149/.

[98] R. Mizouni, M. A. Serhani, R. Dssouli, A. Benharref, and I. Taleb. Performance Evalua-
tion ofMobileWeb Services. In 2011 IEEENinth European Conference onWeb Services,
pages 184–191, September 2011.

[99] Mike Mol. Rosetta Code, Jan 2016. URL http://rosettacode.org/wiki/Rosetta_
Code.

[100] Maurizio Morisio, Luca Ardito, Antonio Vetro’, and Giuseppe Procaccianti. Definition,
implementation and validation of energy code smells: an exploratory study on an em-
bedded system. pages 34–39, 2013.

[101] I. Moura, G. Pinto, F. Ebert, and F. Castor. Mining energy-aware commits. In 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories, pages 56–67,
May 2015. doi: 10.1109/MSR.2015.13.

[102] Lev Mukhanov, Dimitrios S. Nikolopoulos, and Bronis R. de Supinski. ALEA: Fine-Grain
Energy Profiling with Basic Block Sampling. In Proceedings of the 2015 International
Conference on Parallel Architecture and Compilation (PACT), PACT ’15, pages 87–98,
Washington, DC, USA, 2015. IEEE Computer Society. ISBN 978-1-4673-9524-3. doi:
10.1109/PACT.2015.16.

[103] S. Murugesan. Harnessing Green IT: Principles and Practices. IT Professional, 10(1):
24–33, jan 2008. ISSN 1520-9202. doi: 10.1109/MITP.2008.10.

[104] Uwe Naumann. The Art of Differentiating Computer Programs: An Introduction to
Algorithmic Differentiation. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 2012. ISBN 161197206X, 9781611972061.

[105] A. Noureddine and A. Rajan. Optimising Energy Consumption of Design Patterns. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE),
volume 2, pages 623–626, May 2015. doi: 10.1109/ICSE.2015.208.

[106] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier. Runtime monitoring of soft-
ware energy hotspots. In 2012 Proceedings of the 27th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), pages 160–169, sep 2012. doi:
10.1145/2351676.2351699.

[107] Adel Noureddine, Aurélien Bourdon, Romain Rouvoy, and Lionel Seinturier. A Pre-
liminary Study of the Impact of Software Engineering on GreenIT. pages 21–27, June
2012.

http://dl.acm.org/citation.cfm?id=3049832.3049853
http://dl.acm.org/citation.cfm?id=3049832.3049853
http://ieeexplore.ieee.org/document/7120149/
http://rosettacode.org/wiki/Rosetta_Code
http://rosettacode.org/wiki/Rosetta_Code


122 / 130 BIBLIOGRAPHY

[108] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. A Review of EnergyMeasure-
ment Approaches. SIGOPS Oper. Syst. Rev., 47(3):42–49, November 2013. ISSN 0163-
5980. doi: 10.1145/2553070.2553077. URL http://doi.acm.org/10.1145/2553070.
2553077.

[109] L. H. Nunes, L. H. V. Nakamura, H. d F. Vieira, R. M. d O. Libardi, E. M. de Oliveira, J. C.
Estrella, and S. Reiff-Marganiec. Performance and energy evaluation of RESTful web
services in Raspberry Pi. In 2014 IEEE 33rd International Performance Computing and
Communications Conference (IPCCC), pages 1–9, December 2014.

[110] PYPL PopularitY of Programming Language. PYPL PopularitY of Programming Language
index, June 2018. URL http://pypl.github.io/PYPL.html.

[111] Wellington Oliveira, Renato Oliveira, and Fernando Castor. A Study on the Energy
Consumption of Android App Development Approaches. MSR ’17, pages 42–52, Pis-
cataway, NJ, USA, 2017. IEEE Press. ISBN 978-1-5386-1544-7.

[112] Goland org. Go synchronization, May 2019. URL https://golang.org/pkg/sync/.

[113] James Pallister, Simon J. Hollis, and Jeremy Bennett. Identifying Compiler Options to
Minimize Energy Consumption for Embedded Platforms. The Computer Journal, 58(1):
95–109, January 2015. ISSN 0010-4620. doi: 10.1093/comjnl/bxt129.

[114] S. Pandruvada. Running average power limit — rapl textbar 01.org,
2014. [Online]. Available: https://01.org/blogs/tlcounts/2014/
running-average-power-limit---rapl. [Accessed: 2016-06-28].

[115] C. Pang, A. Hindle, B. Adams, and A. E. Hassan. What Do Programmers Know about
Software Energy Consumption? IEEE Software, 33(3):83–89, May 2016. ISSN 0740-
7459. doi: 10.1109/MS.2015.83.

[116] JuanManuel Paniego, Silvana Gallo, Martín Pi Puig, Franco Chichizola, Laura De Giusti,
and Javier Balladini. Analysis of RAPL Energy Prediction Accuracy in a Matrix Multipli-
cation Application on Shared Memory. In Armando Eduardo De Giusti, editor, Com-
puter Science – CACIC 2017, pages 37–46, Cham, 2018. Springer International Publish-
ing. ISBN 978-3-319-75214-3.

[117] Thomas Pantels. Optimizing Power for Interactions between Virus Scanners and
Pre-bundled Software, Jun 2015. URL https://software.intel.com/en-us/articles/
optimizing-power-for-interactions-between-virus-scanners-and-pre-bundled-software.

[118] Thomas Pantels, Sheng Guo, and Rajshree Chabukswar. Touch Re-
sponse Measurement, Analysis, and Optimization for Windows* Ap-
plications, apr 2014. URL https://software.intel.com/en-us/articles/
touch-response-measurement-analysis-and-optimization-for-windows-applications.

[119] George Papadimitriou, Manolis Kaliorakis, Athanasios Chatzidimitriou, Dimitris Gi-
zopoulos, Peter Lawthers, and Shidhartha Das. Harnessing Voltage Margins for En-
ergy Efficiency in Multicore CPUs. In Proceedings of the 50th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO-50 ’17, pages 503–516, New York,

http://doi.acm.org/10.1145/2553070.2553077
http://doi.acm.org/10.1145/2553070.2553077
http://pypl.github.io/PYPL.html
https://golang.org/pkg/sync/
https://01.org/blogs/tlcounts/2014/running-average-power-limit---rapl
https://01.org/blogs/tlcounts/2014/running-average-power-limit---rapl
https://software.intel.com/en-us/articles/optimizing-power-for-interactions-between-virus-scanners-and-pre-bundled-software
https://software.intel.com/en-us/articles/optimizing-power-for-interactions-between-virus-scanners-and-pre-bundled-software
https://software.intel.com/en-us/articles/touch-response-measurement-analysis-and-optimization-for-windows-applications
https://software.intel.com/en-us/articles/touch-response-measurement-analysis-and-optimization-for-windows-applications


123 / 130 BIBLIOGRAPHY

NY, USA, 2017. ACM. ISBN 978-1-4503-4952-9. doi: 10.1145/3123939.3124537. URL
http://doi.acm.org/10.1145/3123939.3124537.

[120] Jae Jin Park, Jang-Eui Hong, and Sang-Ho Lee. Investigation for Software Power Con-
sumption of Code Refactoring Techniques. In Marek Reformat, editor, The 26th In-
ternational Conference on Software Engineering and Knowledge Engineering, Hyatt
Regency, Vancouver, BC, Canada, July 1-3, 2013, pages 717–722. Knowledge Systems
Institute Graduate School, 2014.

[121] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where is the Energy Spent Inside My
App?: Fine Grained Energy Accounting on Smartphones with Eprof. In Proceedings
of the 7th ACM European Conference on Computer Systems, EuroSys ’12, pages 29–
42, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1223-3. doi: 10.1145/2168836.
2168841. URL http://doi.acm.org/10.1145/2168836.2168841.

[122] Tomasz Patyk, Harri Hannula, Pertti Kellomaki, and Jarmo Takala. Energy consumption
reduction by automatic selection of compiler options. In 2009 International Sympo-
sium on Signals, Circuits and Systems, pages 1–4, July 2009. doi: 10.1109/ISSCS.2009.
5206106.

[123] Mathias Payer and Thomas R. Gross. Fine-grained User-space Security Through Vir-
tualization. In Proceedings of the 7th ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments, VEE ’11, pages 157–168, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0687-4. doi: 10.1145/1952682.1952703. URL
http://doi.acm.org/10.1145/1952682.1952703. event-place: Newport Beach, Cali-
fornia, USA.

[124] Rui Pereira, Marco Couto, João Saraiva, Jácome Cunha, and João Paulo Fernandes.
The Influence of the Java Collection Framework on Overall Energy Consumption. In
Proceedings of the 5th International Workshop on Green and Sustainable Software,
GREENS ’16, pages 15–21, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4161-
5. doi: 10.1145/2896967.2896968. URL http://doi.acm.org/10.1145/2896967.
2896968.

[125] Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Fernandes,
and João Saraiva. Energy efficiency across programming languages: how do energy,
time, and memory relate? In Proceedings of the 10th ACM SIGPLAN International
Conference on Software Language Engineering, pages 256–267. ACM, October 2017.
doi: 10.1145/3136014.3136031.

[126] Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo Fer-
nandes, and João Saraiva. Energy Efficiency Across Programming Languages: How Do
Energy, Time, and Memory Relate? In Proceedings of the 10th ACM SIGPLAN Interna-
tional Conference on Software Language Engineering, SLE 2017, pages 256–267, New
York, NY, USA, 2017. ACM. ISBN 978-1-4503-5525-4. doi: 10.1145/3136014.3136031.
URL http://doi.acm.org/10.1145/3136014.3136031. event-place: Vancouver, BC,
Canada.

http://doi.acm.org/10.1145/3123939.3124537
http://doi.acm.org/10.1145/2168836.2168841
http://doi.acm.org/10.1145/1952682.1952703
http://doi.acm.org/10.1145/2896967.2896968
http://doi.acm.org/10.1145/2896967.2896968
http://doi.acm.org/10.1145/3136014.3136031


124 / 130 BIBLIOGRAPHY

[127] Rui Pereira, Pedro Simão, Jácome Cunha, and João Saraiva. jStanley: Placing a Green
Thumb on Java Collections. In Proceedings of the 33rd ACM/IEEE International Confer-
ence on Automated Software Engineering, ASE 2018, pages 856–859, New York, NY,
USA, 2018. ACM. ISBN 978-1-4503-5937-5. doi: 10.1145/3238147.3240473.

[128] Peter A. H. Peterson, Digvijay Singh, William J. Kaiser, and Peter L. Reiher. Investigating
Energy and Security Trade-offs in the Classroom with the Atom LEAP Testbed. In Pro-
ceedings of the 4th Conference on Cyber Security Experimentation and Test, CSET’11,
pages 11–11, Berkeley, CA, USA, 2011. USENIX Association.

[129] S. Petridou and S. Basagiannis. Towards energy consumption evaluation of the SSL
handshake protocol in mobile communications. In 2012 9th Annual Conference on
Wireless On-Demand Network Systems and Services (WONS), January 2012. doi: 10.
1109/WONS.2012.6152219.

[130] G. Pinto, F. Soares-Neto, and F. Castor. Refactoring for Energy Efficiency: A Reflection
on the State of the Art. In 2015 IEEE/ACM 4th International Workshop on Green and
Sustainable Software (GREENS), pages 29–35, May 2015. doi: 10.1109/GREENS.2015.
12.

[131] G. Pinto, A. Canino, F. Castor, G. Xu, and Y. D. Liu. Understanding and overcoming
parallelism bottlenecks in ForkJoin applications. In 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 765–775, October 2017.
doi: 10.1109/ASE.2017.8115687.

[132] Gustavo Pinto. Refactoring Multicore Applications Towards Energy Efficiency. In Pro-
ceedings of the 2013 Companion Publication for Conference on Systems, Program-
ming, & Applications: Software for Humanity, SPLASH ’13, pages 61–64, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-1995-9.

[133] Gustavo Pinto, Fernando Castor, and Yu David Liu. Understanding Energy Behaviors of
Thread Management Constructs. In Proceedings of the 2014 ACM International Con-
ference on Object Oriented Programming Systems Languages & Applications, OOPSLA
’14, pages 345–360, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2585-1. doi:
10.1145/2660193.2660235. URL http://doi.acm.org/10.1145/2660193.2660235.

[134] Gustavo Pinto, Fernando Castor, and Yu David Liu. Mining Questions About Software
Energy Consumption. In Proceedings of the 11th Working Conference on Mining Soft-
ware Repositories, MSR 2014, pages 22–31, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2863-0. doi: 10.1145/2597073.2597110. URL http://doi.acm.org/10.
1145/2597073.2597110.

[135] Gustavo Pinto, Fernando Castor, and Yu David Liu. Understanding Energy Behaviors of
Thread Management Constructs. In Proceedings of the 2014 ACM International Con-
ference on Object Oriented Programming Systems Languages & Applications, OOPSLA
’14, pages 345–360, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2585-1. doi:
10.1145/2660193.2660235.

http://doi.acm.org/10.1145/2660193.2660235
http://doi.acm.org/10.1145/2597073.2597110
http://doi.acm.org/10.1145/2597073.2597110


125 / 130 BIBLIOGRAPHY

[136] Gustavo Pinto, Kenan Liu, and Fernando Castor. A Comprehensive Study on the En-
ergy Efficiency of Java Thread-Safe Collections. In Proceedings of the 32nd IEEE Inter-
national Conference on SoftwareMaintenance and Evolution, Raleigh, North Carolina,
USA, 2016. IEEE Computer Society.

[137] N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha. A study of the energy con-
sumption characteristics of cryptographic algorithms and security protocols. IEEE
Transactions on Mobile Computing, 5(2), February 2006. ISSN 1536-1233. doi:
10.1109/TMC.2006.16.

[138] Giuseppe Procaccianti, Héctor Fernández, and Patricia Lago. Empirical evaluation of
two best practices for energy-efficient software development. Journal of Systems and
Software, 117:185–198, July 2016. ISSN 0164-1212. doi: 10.1016/j.jss.2016.02.035.
URL http://www.sciencedirect.com/science/article/pii/S0164121216000777.

[139] Aleksandar Prokopec, Andrea Rosa, David Leopoldseder, Gilles Duboscq, Petr Tuma,
Martin Studener, Lubomir Bulej, Yudi Zheng, Alex Villazon, Doug Simon, Thomas
Wurthinger, and Walter Binder. Renaissance: benchmarking suite for parallel applica-
tions on the JVM. In Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2019, pages 31–47, Phoenix, AZ,
USA, June 2019. Association for ComputingMachinery. ISBN 978-1-4503-6712-7. doi:
10.1145/3314221.3314637. URL https://doi.org/10.1145/3314221.3314637.

[140] A. Prout, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gadepally, M. Houle,
M. Hubbell, M. Jones, A. Klein, P. Michaleas, L. Milechin, J. Mullen, A. Rosa, S. Samsi,
C. Yee, A. Reuther, and J. Kepner. Measuring the Impact of Spectre and Meltdown. In
2018 IEEE High Performance extreme Computing Conference (HPEC), September 2018.
doi: 10.1109/HPEC.2018.8547554.

[141] L.B. Rall. The Arithmetic of Differentiation. MRC TECHNICAL SUMMARY REPORT.
Mathematics Research Center, University of Wisconsin-Madison, 1984. URL https:
//books.google.gr/books?id=dIHZNQAACAAJ.

[142] M. Rashid, L. Ardito, andM. Torchiano. Energy ConsumptionAnalysis of Algorithms Im-
plementations. In 2015 ACM/IEEE International Symposium on Empirical Software En-
gineering and Measurement (ESEM), pages 1–4, oct 2015. doi: 10.1109/ESEM.2015.
7321198.

[143] M. Rashid, L. Ardito, and M. Torchiano. Energy Consumption Analysis of Algorithms
Implementations. In 2015 ACM/IEEE International Symposium on Empirical Software
Engineering andMeasurement (ESEM), pages 1–4, October 2015. doi: 10.1109/ESEM.
2015.7321198.

[144] Raspberry.org. Raspberry Pi 3 Model B, Mar 2018. URL https://www.raspberrypi.
org/products/raspberry-pi-3-model-b/.

[145] Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen, Camilo Vega, Michael Stumm, and
Ding Yuan. An Analysis of Performance Evolution of Linux’s Core Operations. In
Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP ’19,

http://www.sciencedirect.com/science/article/pii/S0164121216000777
https://doi.org/10.1145/3314221.3314637
https://books.google.gr/books?id=dIHZNQAACAAJ
https://books.google.gr/books?id=dIHZNQAACAAJ
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/


126 / 130 BIBLIOGRAPHY

pages 554–569, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-6873-5. doi: 10.
1145/3341301.3359640. URLhttp://doi.acm.org/10.1145/3341301.3359640. event-
place: Huntsville, Ontario, Canada.

[146] Haris Ribic and Yu David Liu. Energy-efficient Work-stealing Language Runtimes. In
Proceedings of the 19th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’14, pages 513–528, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2305-5. doi: 10.1145/2541940.2541971.

[147] Haris Ribic and Yu David Liu. Energy-efficient Work-stealing Language Runtimes. In
Proceedings of the 19th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’14, pages 513–528, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2305-5.

[148] Guenter Roeck. lm-sensors, jan 2018. URL https://github.com/groeck/lm-sensors.

[149] W. W. Royce. Managing the Development of Large Software Systems: Concepts and
Techniques. In Proceedings of the 9th International Conference on Software Engi-
neering, ICSE ’87, pages 328–338, Los Alamitos, CA, USA, 1987. IEEE Computer Soci-
ety Press. ISBN 978-0-89791-216-7. URL http://dl.acm.org/citation.cfm?id=41765.
41801.

[150] Rubén Saborido, Venera Arnaoudova, Giovanni Beltrame, Foutse Khomh, andGiuliano
Antoniol. On the impact of sampling frequency on software energy measurements.
PeerJ PrePrints, 3:e1219, 2015. doi: 10.7287/peerj.preprints.1219v2.

[151] C. Sahin, F. Cayci, I. L. M. Gutiérrez, J. Clause, F. Kiamilev, L. Pollock, and K. Winbladh.
Initial explorations on design pattern energy usage. In 2012 First International Work-
shop on Green and Sustainable Software (GREENS), pages 55–61, June 2012. doi:
10.1109/GREENS.2012.6224257.

[152] C. Sahin, P. Tornquist, R. Mckenna, Z. Pearson, and J. Clause. How Does Code Ob-
fuscation Impact Energy Usage? In 2014 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), pages 131–140, September 2014. doi:
10.1109/ICSME.2014.35.

[153] Cagri Sahin, Lori Pollock, and James Clause. How Do Code Refactorings Affect Energy
Usage? In Proceedings of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM ’14, pages 36:1–36:10, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2774-9. doi: 10.1145/2652524.2652538.

[154] Cagri Sahin, Lori Pollock, and James Clause. From benchmarks to real apps. Journal of
Systems and Software, 117(C):307–316, July 2016. ISSN 0164-1212.

[155] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze,
and Dan Grossman. EnerJ: Approximate Data Types for Safe and General Low-power
Computation. In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, pages 164–174, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0663-8. doi: 10.1145/1993498.1993518. URL http:
//doi.acm.org/10.1145/1993498.1993518.

http://doi.acm.org/10.1145/3341301.3359640
https://github.com/groeck/lm-sensors
http://dl.acm.org/citation.cfm?id=41765.41801
http://dl.acm.org/citation.cfm?id=41765.41801
http://doi.acm.org/10.1145/1993498.1993518
http://doi.acm.org/10.1145/1993498.1993518


127 / 130 BIBLIOGRAPHY

[156] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo Kyrola, Har-
sha Vardhan Simhadri, and Kanat Tangwongsan. Brief Announcement: The Problem
Based Benchmark Suite. In Proceedings of the Twenty-fourth Annual ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA ’12, pages 68–70, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1213-4. doi: 10.1145/2312005.2312018. URL
http://doi.acm.org/10.1145/2312005.2312018.

[157] Stelios Sidiroglou-Douskos, SasaMisailovic, HenryHoffmann, andMartinRinard. Man-
aging Performance vs. Accuracy Trade-offs with Loop Perforation. In Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foun-
dations of Software Engineering, ESEC/FSE ’11, pages 124–134, New York, NY, USA,
2011. ACM. ISBN 9781450304436. doi: 10.1145/2025113.2025133. URL http:
//doi.acm.org/10.1145/2025113.2025133.

[158] Nikolay A. Simakov, Martins D. Innus, Matthew D. Jones, Joseph P. White, Steven M.
Gallo, Robert L. DeLeon, and Thomas R. Furlani. Effect of Meltdown and Spectre
Patches on the Performance of HPCApplications. arXiv:1801.04329 [cs], January 2018.
URL http://arxiv.org/abs/1801.04329. arXiv: 1801.04329.

[159] Balaji Subramaniam and Wu-chun Feng. GBench: benchmarking methodology for
evaluating the energy efficiency of supercomputers. Computer Science - Research and
Development, 28(2-3):221–230, May 2012. ISSN 1865-2034, 1865-2042. doi: 10.
1007/s00450-012-0218-0.

[160] Marek Suchanek, Milan Navratil, Don Domingo, and Laura Bailey. 4.4. CPU Frequency
Governors, July 2018. URL https://access.redhat.com/documentation/en-us/red_
hat_enterprise_linux/6/html/performance_tuning_guide/s-cpu-cpufreq.

[161] Phoronix Test Suite. Phoronix open-source, automated benchmarking, may 2019. URL
https://www.phoronix-test-suite.com/.

[162] László Szekeres, Mathias Payer, TaoWei, and Dawn Song. SoK: EternalWar inMemory.
In 2013 IEEE Symposium on Security and Privacy, pages 48–62, May 2013. doi: 10.
1109/SP.2013.13. ISSN: 1081-6011.

[163] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, USA, 3rd
edition, 2007. ISBN 978-0-13-600663-3.

[164] Tiobe. TIOBE Index | TIOBE - The Software Quality Company, Oct 2017. URL https:
//www.tiobe.com/tiobe-index/.

[165] Tiobe. Programming Languages Definition | TIOBE - The Software Qual-
ity Company, jan 2018. URL https://www.tiobe.com/tiobe-index/
programming-languages-definition/.

[166] A. R. Tonini, L. M. Fischer, J. C. B. d Mattos, and L. B. d Brisolara. Analysis and Eval-
uation of the Android Best Practices Impact on the Efficiency of Mobile Applications.
In 2013 III Brazilian Symposium on Computing Systems Engineering, pages 157–158,
December 2013. doi: 10.1109/SBESC.2013.39.

http://doi.acm.org/10.1145/2312005.2312018
http://doi.acm.org/10.1145/2025113.2025133
http://doi.acm.org/10.1145/2025113.2025133
http://arxiv.org/abs/1801.04329
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-cpu-cpufreq
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-cpu-cpufreq
https://www.phoronix-test-suite.com/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/programming-languages-definition/
https://www.tiobe.com/tiobe-index/programming-languages-definition/


128 / 130 BIBLIOGRAPHY

[167] Anne E. Trefethen and Jeyarajan Thiyagalingam. Energy-aware software: Chal-
lenges, opportunities and strategies. Journal of Computational Science, 4(6):444–
449, November 2013. ISSN 1877-7503. doi: 10.1016/j.jocs.2013.01.005. URL
http://www.sciencedirect.com/science/article/pii/S1877750313000173.

[168] Ward Van Heddeghem, Sofie Lambert, Bart Lannoo, Didier Colle, Mario Pickavet, and
Piet Demeester. Trends in worldwide ICT electricity consumption from 2007 to 2012.
Computer Communications, 50:64–76, sep 2014. ISSN 0140-3664.

[169] Vassilis Vassiliadis, Charalampos Chalios, Konstantinos Parasyris, Christos D.
Antonopoulos, Spyros Lalis, Nikolaos Bellas, Hans Vandierendonck, and Dim-
itrios S. Nikolopoulos. Exploiting Significance of Computations for Energy-Constrained
Approximate Computing. International Journal of Parallel Programming, 44(5):
1078–1098, October 2016. ISSN 1573-7640. doi: 10.1007/s10766-016-0409-6. URL
https://doi.org/10.1007/s10766-016-0409-6.

[170] Vassilis Vassiliadis, Jan Riehme, Jens Deussen, Konstantinos Parasyris, Christos D.
Antonopoulos, Nikolaos Bellas, Spyros Lalis, and Uwe Naumann. Towards Automatic
Significance Analysis for Approximate Computing. In Proceedings of the 2016 Inter-
national Symposium on Code Generation and Optimization, CGO ’16, pages 182–193,
New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3778-6. doi: 10.1145/2854038.
2854058. URL http://doi.acm.org/10.1145/2854038.2854058.

[171] WattsUpMeter. Watts up? Products: Meters, Oct 2017. URL https://www.
wattsupmeters.com/secure/products.php?pn=0.

[172] Oliveira Wellington, Oliveira Renato, Castor Fernando, Fernandes Benito, and Pinto
Gustavo. Recommending energy-efficient java collections. In Proceedings of the
16th International Conference onMining Software Repositories, MSR 2019, 26-27May
2019, Montreal, Canada., pages 160–170, 2019.

[173] A. Yazdanbakhsh, D. Mahajan, B. Thwaites, J. Park, A. Nagendrakumar, S. Sethura-
man, K. Ramkrishnan, N. Ravindran, R. Jariwala, A. Rahimi, H. Esmaeilzadeh, and
K. Bazargan. Axilog: Language support for approximate hardware design. In 2015 De-
sign, Automation Test in Europe Conference Exhibition (DATE), pages 812–817, March
2015. doi: 10.7873/DATE.2015.0513.

[174] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran. AxBench: A
Multiplatform Benchmark Suite for Approximate Computing. IEEE Design Test, 34(2):
60–68, April 2017. ISSN 2168-2356. doi: 10.1109/MDAT.2016.2630270.

[175] Tomofumi Yuki and Sanjay Rajopadhye. Folklore Confirmed: Compiling for Speed =
Compiling for Energy. In Languages and Compilers for Parallel Computing, Lecture
Notes in Computer Science, pages 169–184. Springer, Cham, September 2013. ISBN
978-3-319-09966-8 978-3-319-09967-5. doi: 10.1007/978-3-319-09967-5_10. URL
https://link.springer.com/chapter/10.1007/978-3-319-09967-5_10.

[176] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P. Dick, Zhuo-
qing Morley Mao, and Lei Yang. Accurate Online Power Estimation and Automatic

http://www.sciencedirect.com/science/article/pii/S1877750313000173
https://doi.org/10.1007/s10766-016-0409-6
http://doi.acm.org/10.1145/2854038.2854058
https://www.wattsupmeters.com/secure/products.php?pn=0
https://www.wattsupmeters.com/secure/products.php?pn=0
https://link.springer.com/chapter/10.1007/978-3-319-09967-5_10


129 / 130 BIBLIOGRAPHY

Battery Behavior Based Power Model Generation for Smartphones. In Proceedings
of the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software Code-
sign and System Synthesis, CODES/ISSS ’10, pages 105–114, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-905-3. doi: 10.1145/1878961.1878982.

[177] Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and R. Sekar. A platform for secure static
binary instrumentation. ACM SIGPLAN Notices, 49(7):129–140, March 2014. ISSN
0362-1340. doi: 10.1145/2576195.2576208. URL http://dl.acm.org/citation.cfm?
id=2576195.2576208.

http://dl.acm.org/citation.cfm?id=2576195.2576208
http://dl.acm.org/citation.cfm?id=2576195.2576208


Part B

List of Publications

B.1 Accepted publications based on this thesis
• Stefanos Georgiou and Diomidis Spinellis. Energy-Delay Investigation of Remote Inter-
Process Communication Technologies. Accepted for publication in Elsevier Journal of
Systems and Software 2019. https://doi.org/10.1016/j.jss.2019.110506

• Stefanos Georgiou, Stamatia Rizou, and Diomidis Spinellis. Software Development Life
Cycle for Energy-Efficiency: Techniques and Tools. Accepted for publication in ACM
Computing Surveys 2019. https://doi.org/10.1145/3337773

• Stefanos Georgiou, Maria Kechagia Panos Louridas, and Diomidis Spinellis. What
Are Your Programming Language’s Energy-Delay Implications? In 15th Inter-
national Conference on Mining Software Repositories: Technical Track, MSR
’18. New York, NY, USA, May 2018. Association for Computing Machinery.
https://doi.org/10.1145/3196398.3196414

B.2 Submitted articles based on this thesis
• StefanosGeorgiou, DimitrisMitropulos, Diomidis Spinellis. Energy-Efficient Computing
in a Safe Environment.

B.3 Relevant accepted publications not part of the thesis
• Stefanos Georgiou, Maria Kechagia, and Diomidis Spinellis. Analyzing Programming
Languages’ Energy Consumption: An Empirical Study. In PCI 2017: Proceedings of the
21st Pan-Hellenic Conference on Informatics, ACM International Conference Proceed-
ing Series. ACM Press, September 2017. https://doi.org/10.1145/3139367.3139418

130


	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Proposed Solutions and Contributions
	1.4 Thesis Outline
	1.5 How to Read this Thesis

	2 Related Work
	2.1 Background
	2.1.1 Methodology
	2.1.2 Energy Efficiency in the Context of SDLC

	2.2 Requirements
	2.2.1 Survey Studies
	2.2.2 Empirical Evaluation Studies

	2.3 Design
	2.3.1 Empirical Evaluation of Design Patterns
	2.3.2 Energy Optimisation of Design Patterns

	2.4 Implementation
	2.4.1 Parallel Programming
	2.4.1.1 Experimental Studies
	2.4.1.2 Algorithms

	2.4.2 Approximate Computing
	2.4.2.1 Programming Frameworks
	2.4.2.2 Annotation-Based Extensions
	2.4.2.3 Directive-Based Extensions
	2.4.2.4 Memoisation

	2.4.3 Source Code Analysis
	2.4.3.1 System Calls
	2.4.3.2 Optimisation Tools
	2.4.3.3 Tests Generation Framework
	2.4.3.4 Line-by-Line

	2.4.4 Programming Languages
	2.4.4.1 Different Programming Languages
	2.4.4.2 Compiler Optimizations

	2.4.5 Data Structures
	2.4.5.1 Experimental Studies
	2.4.5.2 Tooling Support

	2.4.6 Coding Practices
	2.4.7 IPC Technologies

	2.5 Verification
	2.5.1 Benchmarks
	2.5.2 Monitoring Tools
	2.5.2.1 Software Energy Monitoring Tools
	Workstations and Servers
	Virtual Machines
	SmartPhones

	2.5.2.2 Hardware Energy Monitoring Tools
	Workstation and Server Monitoring Tools
	Smartphone Monitoring Tools



	2.6 Maintenance
	2.6.1 Empirical Evaluation of Code Refactoring
	2.6.2 Tools for Refactoring

	2.7 Research Opportunities

	3 Methodology
	3.1 Research Objectives
	3.1.1 Programming Languages Research Questions
	3.1.2 IPC Research Questions
	3.1.3 Safeguards Research Questions

	3.2 Software Systems and Tools
	3.2.1 Programming Languages Subject Systems
	3.2.2 IPC Subject Systems
	3.2.3 Safeguards Subject Systems

	3.3 Research Method
	3.3.1 Programming Languages Measurements Collection
	3.3.2 IPC Measurements Collection
	3.3.3 Accuracy of obtained Results
	3.3.4 Safeguards Measurements Collection

	3.4 Threats to Validity
	3.4.1 Programming Languages Limitations
	3.4.2 IPC Limitations
	3.4.3 Safeguards Limitations


	4 Results
	4.1 Programming Languages Results
	4.1.1 PL-RQ1. Which programming languages are the most EDP-efficient and inefficient for particular tasks?
	4.1.1.1 Embedded System Results
	4.1.1.2 Laptop System Results
	4.1.1.3 Server System Results
	4.1.1.4 Range of results

	4.1.2 PL-RQ2. Which types of programming languages are, on average, more EDP-efficient and inefficient for each of the platforms?
	4.1.3 PL-RQ3. How much does the EDP of each programming language differ among the selected platforms? 

	4.2 IPC Results
	4.2.1 IPC-RQ1. Which IPC technology implementation offers the most energy- and run-time performance-efficient results?
	4.2.1.1 Intel platforms
	4.2.1.2 ARM platforms
	4.2.1.3 Range of results

	4.2.2 IPC-RQ2. What are the reasons that make certain IPC technologies more energy and run-time performance-efficient?
	4.2.2.1 Platforms' System Calls
	4.2.2.2 Identifying the Facts

	4.2.3 IPC-RQ3. Is the energy consumption of the IPC technologies proportional to their run-time performance or resource usage?
	4.2.3.1 Energy consumption and run-time performance
	4.2.3.2 Energy consumption and resource usage


	4.3 Safeguards Results Analysis
	4.3.1 SG-RQ1. What are the energy and run-time performance implications of the security mechanisms on a computer system?
	4.3.1.1 CPU Vulnerability Patches
	4.3.1.2 Communication-related Security
	4.3.1.3 Memory-related Protection
	4.3.1.4 Compiler-related Safeguards

	4.3.2 SG-RQ2. Is the energy consumption of the examined security mechanisms proportional to their run-time performance?
	4.3.2.1 CPU-related Vulnerability Patches
	4.3.2.2 Communication-related Security
	4.3.2.3 Memory-related Protection
	4.3.2.4 Compiler-related Safeguards

	4.3.3 SG-RQ3. How do security mechanisms affect the energy consumption and the run-time performance of different applications and utilities?
	4.3.3.1 CPU-related Vulnerability Patches
	4.3.3.2 Compiler-related Safeguards



	5 Discussion
	5.1 Programming Languages Findings
	5.1.1 Champions
	5.1.2 Impact

	5.2 IPC Findings
	5.2.1 Interpreting the Findings
	5.2.2 Lessons learned

	5.3 Safeguards Findings
	5.3.1 CPU Vulnerability Patches and GCC Safeguards


	6 Conclusions and Future Work
	6.1 Contributions of the Thesis
	6.2 Future Work

	A Appendix I: Heatmaps from Programming Languages Study
	Bibliography
	B List of Publications
	B.1 Accepted publications based on this thesis
	B.2 Submitted articles based on this thesis
	B.3 Relevant accepted publications not part of the thesis


