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1. INTRODUCTION
ICT-related products and services contribute to high energy consumption.1 As indi-
cated by Gelenbe and Caseau [2015] and Van Heddeghem et al. [2014], the energy
consumption of the IT sector is rising faster than initially predicted and is expected
to reach 15% of the world’s total energy consumption by 2020. Besides, recent studies
presented by climate scientists in the SMARTer20302 report, outline that GreenHouse
Gases (GHGs) due to IT, currently estimated at around 2.3% of the global GHGs, are
growing much faster than initially predicted.

A proposed method to counter ICT’s growing energy hunger is through GreenIT: the
practice of designing, implementing, using, and disposing of IT-related products in an
eco-friendly way [Murugesan 2008]. The concept of GreenIT has seen widespread adop-
tion and acceptance from research communities and organizations [Hernandez and
Ona 2015; Deng and Ji 2015]. Initially, GreenIT was mostly adopted and considered at
the hardware level. For example, Bacha and Teodorescu [2013, 2014]; Papadimitriou
et al. [2017] proposed firmware to reduce the voltage margin and supply voltage with-
out degrading the operating frequency of the CPU to save energy. Leng et al. [2015]
showed the energy benefits obtained by reducing the GPU’s voltage margin. Through a
survey study, Mittal and Vetter [2016] illustrated the energy optimization opportuni-
ties that non-volatile memories can offer.

Although hardware design and utilization are undoubtedly key factors affecting en-
ergy consumption, there is solid evidence that software design can also significantly
alter the energy consumption of IT products [Capra et al. 2012; Ferreira et al. 2013;
Eder 2013]. To this end, dedicated conference tracks (e.g., GREENS,3 eEnergy4) have
identified energy efficiency as an emerging research area for reducing software energy
consumption through software development practices. Related research has investi-
gated the field of energy-efficient placement of processing tasks on computing nodes
and heterogeneous computer systems (CPU and GPU), operating systems, virtual ma-
chines, real-time systems, and so on [Beloglazov et al. 2010; Kong and Liu 2014; Mas-
telic et al. 2014; Chen and Kuo 2007; Mittal and Vetter 2015]. In this study, we aim
at investigating the energy efficiency gains that can be extracted at each phase of the
software development process.

Existing research works in the area have tried to address some of the challenges for
reducing energy consumption in software development by defining appropriate met-
rics, employing energy measuring tools, and proposing best practices. For example,
Bozzelli et al. [2013] presented some energy consumption metrics and classified them
under various environments and purposes. In the context of energy monitoring tools,
Noureddine et al. [2013] performed a study to point out the current state-of-the-art
by contextualizing existing approaches regarding energy measuring tools for worksta-
tions/servers and smart-phones. An initial study by Procaccianti et al. [2016] shows 34
best practices5 that can improve the energy efficiency of software.

Overall, current research provides a fragmented view of the energy-efficient tech-
niques associated with the Software Development Life Cycle (SDLC) and examines
only particular phases of it. Our work intends to fill this gap by presenting works

1Although in the physical sense energy cannot be consumed, we will use the terms energy “consumption”,
“requirement”, and “usage” to refer to the conversion of electrical energy by ICT equipment into thermal
energy dissipation to the environment. Correspondingly, we will use the terms energy “savings”, “reduction”,
“efficiency”, and “optimization” to refer to reduced consumption.
2http://smarter2030.gesi.org/downloads.php
3http://greens.cs.vu.nl/
4http://conferences.sigcomm.org/eenergy/2017/cfp.php
5wiki.cs.vu.nl/green software/
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in the development of energy-efficient software under the holistic scheme of SDLC. For
the presented works, we focus on eliciting implications at each phase of the SDLC, not
only concerning energy consumption but also for run-time performance, where it is rel-
evant. The goal is to guide researchers and software practitioners on existing methods
that can be beneficial and practical at each phase of software development. Addition-
ally, we aim to raise awareness regarding current difficulties and limitations.

1.1. Contribution of this Study
This survey contributes to the field of energy efficiency for software development as
follows.

— It provides an overall view, analysis, and taxonomy of existing technologies, tools,
and techniques for each phase of the SDLC, i.e., Requirements (Section 2), Design
(Section 3), Implementation (Section 4), Verification (Section 5), and Maintenance
(Section 6), for energy efficiency.

— It identifies the state-of-the-art on energy-efficient design and development, presents
a critical review on different parameters which may affect energy efficiency at each
phase of the SDLC, and discusses limitations and future challenges (Section 7).

In the rest of this section we explain our method for compiling related studies (Sub-
section 1.2), and describe our approach for classifying them (Subsection 1.3).

1.2. Methodology
Our study mainly focuses on research that has been conducted within the period span-
ning from 2010 to 2017. We chose this interval based on the observation that energy
efficiency in software development gained further acceptance and publicity from sig-
nificant organizations and conferences during these years. Nevertheless, we widened
this scope by including work published before 2010 in cases where noteworthy studies
exist.

This study aims to investigate dimensions that affect energy consumption at dif-
ferent phases of the SDLC. In order to retrieve related studies, we composed search
queries from the keywords “energy” and “power”, combined with relevant words, i.e.,
“software development life cycle”, “software requirements”, “design patterns”,“parallel
programming/computing”, “approximate programming/computing”, “coding practices”,
“data structures”, “programming languages”, “code analysis”, “benchmarks”, “monitor-
ing tools”, “evaluation tools”, “maintenance”, and “refactoring”.

We searched for relevant publications by querying the following digital libraries,
journals, and magazines: IEEExplore, ACM, ACM Computing Surveys, Springer, Sci-
enceDirect, IEEE Software Magazine. Initially, we had restricted our search spectrum
only to the main tracks of the top software engineering conferences as proposed by
Pinto et al. [2015]. However, the field of energy efficiency in software development is
relatively new, hence related work published in these venues is still sparse. There-
fore, we extended our search to other energy- and software-related conferences and
workshops to enrich our data-set. Additionally, when a retrieved paper was on a topic
close to our interests, we used back reference searching process in order to track down
supplementary relevant publications.

1.3. Energy Efficiency in the Context of SDLC
In this paper, we limit our scope of interest in existing work related to the energy
efficiency focused at each phase of SDLC, i.e.,Requirements, Design, Implementation,
Verification, and Maintenance, following the waterfall model [Royce 1987]. Although
the SDLC waterfall model is an outdated software development approach, it is still
useful as a reference model for categorizing the area’s research. In Figure 1, we present
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Fig. 1. SDLC for Energy Efficiency Taxonomy

the mapping of the energy efficiency techniques and tools under the SDLC process.
Following this classification, we structure this paper accordingly to provide a complete
view of existing tools and techniques for energy-aware software development.

The Requirements phase describes aspects and needs relevant to the development
of software projects/systems when the energy efficiency is compulsory. During the De-
sign phase, software design patterns document best practices used for solving com-
mon ground problems or poor design decisions taken during the development of an
application that can impact the energy consumption. Implementation phase clusters
methods/practices, namely Parallel Programming, Approximate Computing, Source
Code Analysis, Programming Languages, Data Structures, and Coding Practices, which
practitioners can adopt to reduce the software’s energy consumption when developing.
The Verification phase considers metrics and tooling support aiming to evaluate the
software’s energy consumption before its deployment. Maintenance is the phase that
aims to apply refactoring patterns/techniques on a deployed application to reduce its
energy consumption.

2. REQUIREMENTS
The classification of energy efficiency for the SDLC falls under the non-functional re-
quirements such as run-time performance and security. We present relevant work on
requirements concentrating on suggestions gathered by surveying practitioners and on
results based on empirical evaluation. Accordingly, we divide the Requirements Section
into two Subsections: survey studies and empirical evaluation requirements.

2.1. Survey Studies
Mobile devices are more energy-dependent than servers or workstations; therefore, it
is crucial to adopt an energy-conscious approach and consider the battery life, as a lim-
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Table I. Collected Requirements and Identified Limitations

Platform Type of Study Identified Limitations Source

Smart-phones Survey In programmers education [Pang et al. 2015]
Workstations and
Smart-phones

Empirical
Evaluation

On sustainability model for software
development [Beghoura et al. 2015]

Smart-phones Survey On guidelines, support infrastructure,
and reasonable cost of a given task [Manotas et al. 2016]

itation, before developing a mobile application. A qualitative study conducted by Man-
otas et al. [2016] examined green, energy-efficient software engineering perspectives of
464 practitioners from ABB, Google, IBM, and Microsoft software development depart-
ments. Although the study concerned different computing systems, specifically, mobile
and embedded systems and data centers, the practitioners expressed ideas, mostly, on
how to reduce energy consumption on mobile applications. Some of the practitioners
also provided examples regarding the sustainability of smart-phones energy consump-
tion, such as: “turn-by-turn guided navigation should not drain more battery than the
car can charge”,“under normal usage, a device with an X W h battery should last for Y
hours” [Manotas et al. 2016]. Additionally, practitioners suggest that particular tasks
be executed without disturbing the users about battery drain.

Likewise, Pang et al. [2015] performed a study surveying on-line 122 programmers
and concluded in line with Manotas et al. that software practitioners mostly consider
energy consumption as a requirement for mobile application development. To this end,
the authors argued that developers could extract energy-efficiency requirements by
correlating applications functional requirements with the corresponding software com-
ponents’ energy consumption. To accomplish this, a consistent body of knowledge and
understanding of software’s and hardware’s interaction is necessary. The authors listed
the following relevant instructions that developers can take into account:

• Bulk Operations, in order to keep I/O calls minimum.
• Hardware Coordination, such as minimizing memory access.
• Concurrent Programming, such as selecting appropriate thread construct.
• Efficient Data Structures, selecting less energy-greedy data structures.
• Loop Transformation, such as loop fusion to reduce control operations.
• Data Compression, to reduce file sizes before transmitting them.
• Offloading Methods, by calculating heavy operations remotely, i.e., cloud.
• Approximate Programming, to reduce unnecessary precision of computations.

2.2. Empirical Evaluation Studies
An approach to identifying non-functional requirements in order to reduce energy con-
sumption in software development has been proposed by Beghoura et al. [2015]. The
authors focused their study on desktops and smart-phones, where they argued that,
to meet energy-efficient software development, it is necessary to identify the charac-
teristics and requirements of software. Along these lines, a practitioner may consider
four characteristics for providing energy efficient requirements for different types of
systems, namely:

• Computations, to optimize energy consumption through less expensive computa-
tions (CPU-bound).
• Data Management, to reducing the amount of I/O operations, because they are slow

and expensive for a system (storage-bound).
• Data Communication, to mind the amount of data sent or received through a net-

work channel (network-bound operations).
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• Energy Consumption Awareness, to provide energy-related information for indi-
vidual software layers (e.g., through energy profiling tools) and for the software as
a whole.

To this end, Beghoura et al. developed a tool for testing application requirements,
by estimating the energy consumption of CPU, RAM, and NIC. In contrast to Pang
et al. and Manotas et al., Beghoura et al. empirically evaluate their proposed require-
ments. The work of Pang et al. and Manotas et al. are survey-oriented and do not
provide an assessment of the proposed suggestions. However, Manotas et al. obtained
their requirements from experienced and well-known software development compa-
nies. Overall, there is a lack of research work concerning practical guidelines for the
Requirements phase regarding the energy efficiency of software development. Most
of the works were limited to developers experience. As illustrated in Table I, all the
researchers have identified some limitations and challenges in the phase of Require-
ments which can serve as future research guidelines.

3. DESIGN
Proper design decisions are crucial when it comes to energy-efficient software develop-
ment, as the software components and their interactions can alter significantly energy
consumption. In the subsequent Subsections we present studies that evaluate the en-
ergy implications of design patterns [Gamma et al. 1995] or recommend adjustments
for optimizing them in terms of energy consumption. We also indicate cases where
inappropriate design decisions lead to increased energy consumption.

Table II. Design Patterns Empirical Evaluation on Energy-Performance Impact

Type of Study Implications (avg. in %) Platform’s
Type

Source
Pattern Energy Performance

Flyweight 58 –
Proxy 36 –
Mediator 9.56 –
Composite −5.14 –
Abstract
Factory

−21.55 –

Observer −62.20 –

Empirical
Evaluation

Decorator −712.89 –

Embedded
System [Sahin et al. 2012]

Empirical
Evaluation

Decorator −133.60 −132.40
Smart-phone [Bunse et al. 2013]Prototype −33.20 −33

Abstract
Factory

−14.20 −14.20

Observer 4.32 –Patterns Op-
timization Decorator 25.47 – Workstation [Noureddine and Rajan 2015]

3.1. Empirical Evaluation of Design Patterns
Design patterns are general and reusable solutions to commonly appearing software
design problems. In the context of design patterns, Sahin et al. [2012] and Bunse et al.
[2013] performed empirical studies where they compared the energy consumption of
selected patterns. Both works evaluated design patterns from the creational, struc-
tural, and behavioral categories introduced by [Gamma et al. 1995].

Specifically, Sahin et al. examined the energy consumption of different applications6

running on an embedded system, with and without the application of design patterns.

6https://sourcemaking.com/
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The authors illustrated a method of correlating software design and energy consump-
tion that helps software developers understand the trade-offs of their design decisions
with energy consumption. For their experiment, they used 15 out of the 23 design pat-
terns. As an outcome, three out of 15 used patterns resulted in substantial energy
savings, while the remaining resulted in mini-scale changes or negatively affected en-
ergy consumption. Particularly the Flyweight, Mediator, and Proxy patterns resulted
in energy savings when applied on selected applications, while the Decorator pattern
tremendously increased energy consumption.

Bunse et al. focused on evaluating the energy consumption and run-time perfor-
mance impact of design patterns on Android applications. The authors observed an
increase in both energy consumption and execution time after applying six out of the
23 design patterns (Facade, Abstract Factory, Observer, Decorator, Prototype, and Tem-
plate Method) on selected applications.

The results summarized in Table II show that even in between instances of applying
the same design patterns, large variations in energy consumption exist. For instance,
according to the results of Bunse et al. the Decorator pattern increased energy con-
sumption by 133%, while Sahin et al. found a significantly higher energy consumption,
i.e., 712%; this might occur because Bunse et al. employed a smart-phone and Java-
based code snippets to experiment with, while Sahin et al. used an embedded system
and code snippets written in C++.

In conclusion, both Sahin et al. and Bunse et al. observed the negative impact of
some design patterns in embedded and smart-phone devices regarding energy con-
sumption. Moreover, Bunse et al. showed that particular design patterns causing high
energy consumption were also contributing to lower run-time performance. As stated
in both studies, the number of objects and communications among the software compo-
nents comprise primary factors for increasing energy consumption. Both studies iden-
tified the Decorator and Abstract Factory as the most energy-inefficient design pat-
terns. Additional work using specific benchmarks may help understand in depth the
effects of design patterns in diverse applications and platforms.

3.2. Energy Optimization of Design Patterns
Structural changes in the design patterns can lead to significant energy optimizations
as presented by Noureddine and Rajan [2015]. Initially, the authors performed an ex-
perimental study where they manually applied 21 different design patterns on eleven
applications written in both C++ and Java. Their experiment revealed the Observer
and Decorator as the most energy-greedy design patterns. The authors transformed
the existing source code, by reducing the number of created objects and function calls,
and accomplished important energy savings. Specifically, after optimizing the Observer
and Decorator design patterns, the authors reduced the applications’ energy consump-
tion by 10%, on average.

The work of Noureddine and Rajan (like Sahin et al.) lacks run-time performance
measurements. Consequently, it is uncertain how the design pattern optimizations af-
fected applications execution time. However, such design pattern optimizations seem
to be a promising area for further investigation. To this end, a tool that indicates
structural changes for design patterns which lead to optimized applications’ energy
consumption could benefit software practitioners.

4. IMPLEMENTATION
During the Implementation phase, there are several tools, techniques, and strategies
that software practitioners can exploit to improve the energy consumption and run-
time performance of their applications. To this line, we present research results as-
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sociated with programming techniques, source code analyzers, and programming lan-
guages.

Table III. Parallel Programming Energy-Performance Impact

Thread Manage-
ment Strategies

Adjustments Implications (in %) Application
Type

Source
Energy Performance

Effective
Parallelizationc

From 1 to 16
Threads 55 avg. 69 avg. CPU & GPU

boundd
[Kambadur and
Kim 2014]

Effective Paralleliza-
tion & Thread Man-
agement Constructs

Explicit
Threading

– – I/O-bounde

Work Steal-
ing (−50) – 30 (−23) – 10 Embarrassingly

Parallelf
[Pinto et al. 2014]

Pack & Capa Criticality
level DVFS

56 avg. Unaffected CPU-boundb [Cai et al. 2011]

Work Stealingg Load-base
DVFS 11–12 (−3)–(−4) CPU & GPU

boundh
[Ribic and Liu
2014a]

a Collecting threads under the same core and reducing its frequency.
b Recognition-Mining-Synthesis (RMS), an Intel’s application [Chen et al. 2008].
c Statically selecting the effective number of threads.
d Parsec 3.0, SPLASH-2X, SPEC CPU 2006, DaCapo 9.12, SPEC JBB 2013.
e Application such as Largestimage.
f Applications such as Sunflow, Spectralnorm, N-Queens, Tomcat.
g “Underutilized processors take the initiative: they attempt to steal threads from other proces-

sors” [Blumofe and Leiserson 1999].
h Applications from Problem-Based benchmark suite [Shun et al. 2012].

4.1. Parallel Programming
Parallel programming is the process of breaking a large problem into smaller ones to
solve them simultaneously. In this Section, we discuss works that empirically evalu-
ate applications and algorithms that utilize parallel computing. Table III summarizes
implications of related thread management strategies and applied adjustments on en-
ergy consumption and run-time performance for different application types. Fields
with negative values indicate an increase in energy consumption or execution time
for the related source.

4.1.1. Experimental Studies. By performing an empirical study, Kambadur and Kim
[2014] identified configurations and parameters that can reduce the energy consump-
tion of parallel applications. The authors compared nine existing energy manage-
ment strategies by using a standardized system architecture, operating system (OS),
measuring tool, and five benchmark suites. The strategies (e.g., Processor Frequency
Tuning, Overclocking, Parallelism, and Compiler Optimization) were run on 220
experimental configurations and tested on 41 applications totaling in more than
200,000 executions. The obtained results highlight the importance of effective source
code parallelization by employing the appropriate number of threads (see Table III).

To evaluate the energy efficiency of different thread management constructs, Pinto
et al. [2014] performed an empirical study comparing three constructs (i.e., explicit
thread creation, fixed-size thread pooling, and work stealing) on nine benchmarks by
adjusting the number of threads, the task’s granularity level, the data size, and the na-
ture of the data access. The authors observed that the constructs’ energy consumption
vary in different situations. For example, explicit thread creation exhibits the lowest
energy consumption when it comes to I/O-bound applications. For highly parallelized
benchmarks, work stealing outperforms explicit thread creation and fixed-size thread
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pooling by being 30% more energy efficient; however, for more serialized benchmarks,
work stealing is under-performing. Also, the authors noticed that energy consumption
increases as the number of threads increases. This occurs until the number of threads
reaches the number of CPU cores. Afterwards, the authors detected a reduction in en-
ergy consumption for most of the tested applications.

As we can see from Table III the gains and losses concerning energy consumption
and run-time performance are feasible by selecting the appropriate number of threads.
For instance, both Pinto et al. and Kambadur and Kim tuned the number of threads
to evaluate their applications. By using different thread management constructs and
various number of threads, Pinto et al. altered energy consumption from −50% to
30%, while Kambadur and Kim decreased it by 55%, on average. A major distinction
between the two works, that can explain the discrepancies in results, is that Pinto et al.
used Java applications, while Kambadur and Kim utilized Java and, also, C programs
with compiler run-time optimization flags.

As shown above, performing experiments with a varying number of threads or
thread management constructs can help practitioners identify the configurations most
likely to reduce the energy consumption and execution time of their applications. How-
ever, users interaction is mandatory to point out the best configurations and parame-
ters through experimentation—a fact that makes the selection process time-consuming
and cumbersome.

4.1.2. Algorithms. To take advantage of parallel processing, Cai et al. [2011] and Ribic
and Liu [2014b] developed algorithms to minimize the energy consumption by effi-
ciently managing thread workloads. According to Cai et al., most of the Dynamic Volt-
age Frequency Scaling (DVFS) techniques—a mechanism that tunes CPU voltage to
adjust its frequency based on the current workload—are not built to run on multi-
threaded processors; therefore, they are unable to save a considerably large amount
of energy. To this end, the authors suggested thread shuffling, a way of combining
techniques such as thread migration and DVFS to reduce the energy consumption of
an application without compromising its run-time performance. The basic idea be-
hind thread shuffling is to identify threads with the same thread critical degree (slow
threads execution) by using a prediction algorithm and map them under the same core
via thread migration. Afterwards, the algorithm applies voltage dynamically to scale
the cores’ frequency for the cores housing non-critical threads (fast threads execution).

Likewise, Ribic and Liu introduced HERMES, a strategy for work-stealing that em-
ploys a thief-victim approach. The authors refer to thief as the thread which finishes
its tasks and steals work from other threads, the so-called victims. HERMES is com-
posed of two main algorithms, the workpath-sensitive and workload-sensitive. The
workpath-sensitive algorithm defines a thread’s tempo (execution speed) based on the
thief-victim’s relationship; that means, when a thief steals from a victim worker, its
tempo is set lower (because it always steals insignificant tasks) and it is raised once
the victim runs out of work. The workload-sensitive algorithm is a work-flow based tun-
ing mechanism for the workers execution tempo that, if necessary, adjusts the core’s
frequency via DVFS to reduce energy consumption. For instance, if a worker’s queue
is empty, it tries to steal work from other workers; afterwards, it adjusts its core’s
frequency according to its workload.

In the above works, both thread shuffling and HERMES utilize DVFS techniques
with workload migration to accomplish energy savings. Thread shuffling packs all
the threads with a similar criticality level under specific cores and then adjusts the
cores’ clock frequency accordingly, while HERMES alters the clock frequency of each
core based on the threads’ current workload. Particularly, the work-stealing approach
of HERMES resulted in minor energy savings viz-a-viz the thread shuffling technique
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which resulted in 56% of energy savings, on average, as illustrated in Table III. In con-
clusion, HERMES provided energy savings with a minor run-time performance penalty
(i.e., 3–4%), while thread shuffling achieved compelling energy savings without com-
promising run-time performance at all (see Table III).

Table IV. Approximate Computing Energy-Performance Impact

Tool
Name

Approximate Op-
timization Focus

Implications (in %) Precision
Loss

Source

Energy Performance

GREEN
Computations and
loop termination 14 avg. 21 avg. 0.27 [Baek and Chilimbi 2010]

– Function memo-
ization 74 avg. 79 avg. < 3 [Agosta et al. 2011]

Parrot
Optimizes regions
of imperative code 66 avg. 56 avg. 10 avg. [Esmaeilzadeh et al. 2012]

Chisel
Computational
kernel operations 9–20 – < 3 [Misailovic et al. 2014]

EnerJ
Computations,
Data Storage, and
Algorithmica

10–50 – – [Sampson et al. 2011]

Axilog Source code parts 54 avg. – 10 avg. [Yazdanbakhsh et al. 2015]
– Selected group of

tasksb – – – [Vassiliadis et al. 2016a]

DCO
SCORPIO

Selected group of
tasksb 56 avg. – – [Vassiliadis et al. 2016b]

a Programmer can write two different implementations, one is invoked when the data are
precise and the other when they are approximate

b Allows the developer to set which computation tasks, from a group, are going to be executed
approximately/precise

4.2. Approximate Computing
Approximate computing is an approach for sacrificing computation accuracy—when an
application tolerates it—to increase run-time performance or energy savings [Mitra
et al. 2017]. For instance, techniques such as loop perforation that allow users to
manage run-time performance and accuracy trade-offs based on the desired output
quality [Sidiroglou-Douskos et al. 2011]. In this Section, we discuss studies divided
into programming frameworks, memoization, annotation-based, and directive-based
extensions. In Table IV, we summarize the corresponding works.

4.2.1. Programming Frameworks. For their research, both Misailovic et al. [2014]
and Baek and Chilimbi [2010], introduced energy-conscious programming frameworks
to achieve energy savings through approximate computations. Specifically, Misailovic
et al. proposed Chisel, an optimization framework that acts in an automated manner
by selecting approximate kernel operations that result in energy, reliability, and ac-
curacy optimizations. Baek and Chilimbi suggested GREEN, a framework aiming to
optimize expensive loops and functions by considering user-defined Quality of Service
(QoS) requirements. GREEN achieves energy savings through approximate computa-
tions for functions and early loop termination. Moreover, it addresses the QoS and
energy consumption trade-offs by applying approximate programming techniques only
when the QoS requirements are fulfilled. A common element of both GREEN and Chisel
is the comparison between precise and approximate instances for calculating the relia-
bility of the results. However, what differentiates GREEN from Chisel is the periodical
run-time QoS sampling to adjust its approximation techniques and QoS model to meet
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the target requirements. In contrast to GREEN, Chisel is utilizing the approximate
memory of its running platform to increase energy savings by sacrificing some of its
quality output (see Table IV).

4.2.2. Annotation-Based Extensions. Sampson et al. [2011], Esmaeilzadeh et al. [2012],
and Yazdanbakhsh et al. [2015] proposed EnerJ, Parrot transformation, and Axilog,
respectively; all are extensions that achieve energy savings by executing approxi-
mately annotated source code portions. Specifically, EnerJ is a Java-based extension,
furnished with a manual annotation functionality for defining approximate or precise
data selection for an application. By declaring variables and objects as approximate,
EnerJ maps them to approximate memory7 and generates low-cost energy code by us-
ing approximate operations and algorithms. Parrot transformation is a neural network
model that identifies imperative code regions and offloads them to neural processing
unit, instead of CPU, to increase energy and run-time performance. Axilog is a Verilog
extension composing brief and high-level annotations for full control and governance of
approximate hardware. In contrast to the manual annotating approach of EnerJ and
Parrot, Axilog employs a Relaxability Interface Analysis algorithm to automate the
approximation processes based on the designer’s choices. All three annotation systems
offer a safety mechanism for isolating approximate from precise portions of code, thus
guaranteeing the main functionality of an application.

In contrast to GREEN, Chisel, and Axilog, with EnerJ and Parrot the developers are
the wheel-holders of the applied approximation techniques, by selecting which code
portions to be executed as precise. Therefore, EnerJ and Parrot can help practitioners
better understand the energy-approximation trade-offs of their design choices.

4.2.3. Directive-Based Extensions. Another approach for applying approximation tech-
niques on computational tasks is to depend on their significance level (level of impor-
tance or criticality). To this line, Vassiliadis et al. [2016a,b] proposed directive-based
approaches by extending the OpenMP that use approximation techniques to reduce
applications energy consumption. In the Vassiliadis et al. [2016a] work, the authors
proposed a programming model aiming to elicit the highest level of accuracy for an
application according to a user-defined energy budget. Therefore, the authors intro-
duced a run-time system that is responsible for choosing the appropriate configura-
tions, (i.e., number of cores, clock frequency, and accuracy ration) for a specific input
size. The appropriate configurations are inferred by a model which is trained to iden-
tify the configurations that provide the highest possible output accuracy for a given
energy budget. Another approach is DCO/SCORPIO, a framework suggested by Vassil-
iadis et al. [2016b] that supports automated analysis to identify the code’s significance
level. DCO/SCORPIO accomplishes that by employing interval arithmetic [Rall 1984]
and algorithmic differentiation [Naumann 2012] to quantify the significance of partic-
ular computations for a specific input. This output is in turn used by an OpenMP-like
model to classify the computations in task groups according to their significance level.
Thus, it provides approximate methods based on each group’s significance level.

DCO/SCORPION and the work of [Vassiliadis et al. 2016a] differ in that the for-
mer reduces the energy consumption of an application, while the latter achieves the
highest possible output quality within a specific energy consumption threshold. Also,
DCO/SCORPIO is releasing the hands of a user by selecting the computation tasks sig-
nificance, while Vassiliadis et al. [2016a] require the programmer’s involvement to
input directives for critically important parts of the code that do not tolerate impreci-
sion.

7memory parts with reduced voltage or refresh rate such as cache, registers, functional units, and main
memory.
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4.2.4. Memoization. Another approach of saving energy through approximate comput-
ing is by using memoization to store expensive function call results. Agosta et al. [2011]
developed a performance model to select and memoize computationally intensive func-
tion from Financial applications and JavaGrande benchmark. Compared to the above
approaches, memoization seems to have the highest energy savings and run-time per-
formance (see Table IV). However, the authors did not applied their method on real-
world applications.

Table V. Source Code Analysis Related-Work Information

Tool Name Target Platform Energy Measurement
Correlation

Error Mar-
gin (in %)

Source

Eprof Android & Win-
dows OS

Process, Threads, Sys-
tem calls, Routines 6< [Pathak et al. 2012]

eLens Android
Full Source Code Granu-
larity 10 [Hao et al. 2013]

GreenAdvisor Android Routines, System-calls – [Aggarwal et al. 2015]
PEEK Embedded Function Level Systems – [Honig et al. 2014]

SEEDS
Any Java-Based
Platform

User can set which por-
tion to analyze

– [Manotas et al. 2014]

– Smart-phones Function Level – [Banerjee et al. 2014]

4.3. Source Code Analysis
Source code analysis is a testing process that focuses on revealing defects and vulnera-
bilities in a computer program before its deployment phase. In this Section we discuss
works on dynamic source code analysis that aim to identify energy-related bugs and
hot-spots by testing a computer program at real-time. In the context of source code
analysis, we did not find available tools for static code analysis that provide rules for
analyzing source code before execution. Table V shows works on source code analysis
and provides information on the target platform, energy measurement correlation at
various software granularities, and the error margin rate.

4.3.1. System Calls. GreenAdvisor is a profiler system calls that predicts behavior, run-
time performance, and energy-related modifications of an application [Aggarwal et al.
2015]. To predict energy-related changes, GreenAdvisor compares the number of sys-
tem calls on a current version of a software and its previous one. If energy consumption
increases, it pinpoints the energy hot-spots that caused the changes, thus helping de-
velopers in analyzing and understanding the implications of their decisions.

To diagnose energy bottlenecks at the source code level, Pathak et al. [2012] pre-
sented Eprof, a system-calls based power modeling tool for smart-phone applications.
To achieve high accuracy in energy consumption measurements, Eprof incorporates
two subsequent components. First, it uses finite state machines to model different
power states and transitions for individual hardware components, and the smart-
phone as a whole. Then, for each hardware component, it runs a benchmark suite that
consists of applications for collecting the different system calls and their power tran-
sitions. Afterwards, it generates rules for the finite state machines by integrating the
collected knowledge from the executed applications. To estimate energy consumption
at source code level, Eprof cross-references routines (blocks of code) with system call
traces. As an outcome, the authors found that applications using third-party processes
tend to have a 65–75% increase in energy consumption.

Overall, the above-discussed tools are utilizing distinct energy estimation models to
present energy measurements. For example, Eprof employs a model that calculates
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energy consumption of an application at the routine level and various hardware com-
ponents, while GreenAdvisor compares the energy consumption of different versions of
a product and points out the system calls that caused the change.

4.3.2. Optimization Tools. Honig et al. [2014] and Manotas et al. [2014] recommended
tools for dynamic source code analysis. Both Honig et al. and Manotas et al. sug-
gested energy-aware programming approaches to guide developers during the imple-
mentation phase by providing energy-related hints. Honig et al. presented the Proac-
tive Energy-awarE development Kit (PEEK), while Manotas et al. promoted the Soft-
ware Engineer’s Energy-optimization Decision Support (SEEDS) framework. Period-
ically, both approaches analyze the source code under development, and seamlessly
create many different instances from the current source code to identify optimal code
modifications. However, a significant difference between the two approaches is that
PEEK’s energy-associated hints are related to power management mechanisms (e.g.,
sleep state, DVFS, idle state, program-code logic, libraries, and compiler run-time opti-
mization flags) while SEEDS’ suggestions are limited to Java Collection Libraries (JCL),
algorithms, or refactoring parts of the source code. Besides, SEEDS offers to developers
the possibility to set a code block range for analysis while PEEK analyzes source code
at function granularity.

4.3.3. Tests Generation Framework. Another way for identifying energy-related bugs is
through an automated test generation framework, introduced by Banerjee et al. [2014]
The aforementioned research points out energy-related hot-spots in four categories of
smart-phone applications which are 1) hardware resources, 2) sleep-state transitions,
3) background services, and 4) defective functionality. First, a detection process is in-
voked to search for possible user interactions through event flow graphs. Then, the
advocated framework generates test cases to capture interaction scenarios and, sub-
sequently, to identify energy hot-spots. Alongside the energy hot-spots identification,
the tool issues test reports for the developers. However, compared to the work of Honig
et al. and Manotas et al., the work of Banerjee et al. does not provide hints for energy
optimization, but only finds the energy-wasteful parts of an application.

4.3.4. Line-by-Line. To measure applications energy consumption at different levels
of software granularity and raise energy-awareness during the development phase,
Hao et al. suggested eLens. eLens estimates energy consumption via program analy-
sis and per-instruction power modeling. The authors use program analysis to obtain
execution-related information such as bytecode or API calls from various smart-phone
components (e.g., CPU, RAM, GPS, 3G). Then, the collected information is passed to the
per-instruction power modeling component to estimate an application’s energy con-
sumption. Thus, eLens provides energy measurements at various levels of granularity:
application, method, class, path, and source code lines. Compared to all presented tools,
eLens is the only one that provides energy measurements at all levels of source code
granularity. Thus, raising energy-awareness by providing fine-grained information on
application consumption.

4.4. Programming Languages
Programming languages offer a set of instructions that allow users to utilize system re-
sources to solve a problem. Languages differ in features and the way they allocate com-
puting resources. In this Section, we examine empirical studies investigating the en-
ergy consumption and run-time performance implications of programming languages.
Table VI lists related works in terms of energy consumption, run-time performance,
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Table VI. Programming Languages Energy-Performance Impact

Comparing X
to Y

Implications (avg. in %) Opt.
Flag

Run-
Time
Env.

Selected Ap-
plication

Source

Energy Performance

C++ to C 8.4 8.67
C++ to Java 47.4 38.12
C++ to Python 166.28 195.17
C to Java 38.39 29.08
C to Python 106.4 195.5
Java to Python 195.87 194.77

–O3 – All Appsa [Abdulsalam et al. 2014]

C++ to Java 166.14 159.13
–O3

Dalvikb
Quick Sort [Chen and Zong 2016]C++ to Java Identical Identical ARTc

C to C++ Identical 3.38 – Fibonacci
ARM-assembly
to C

15.38 10.52

– –
Counting
Sort [Rashid et al. 2015]

ARM-assembly
to Java

58.84 90.90 Counting
Sort

a Fast Fourier, Quick Sort, Linked List
b https://source.android.com/devices/tech/dalvik/
c Android Run-Time (ART) https://source.android.com/devices/tech/dalvik/

employed optimization flag, and test cases. We summarize related results in a consoli-
dated list, found in Table VI, of average values calculated by us.8

Table VII. Programming Languages Configurations

Programming Optimization Target Test Cases Source
Languages Flags Platforms

C, C++, Java, and
Python –O{1,2,3} Server

system
Fast Fourier, Linked
List, Quick Sort [Abdulsalam et al. 2014]

ARM assembly, C,
and Java

– Embedded
system

Bubble, Merge Quick,
Counting [Rashid et al. 2015]

C, C++, and Java –O{1,2,3} Android
devices

Fibonacci, Tower of
Hanoi, Pi calculation [Chen and Zong 2016]

The studies presented in this Section are based on different experimental platforms.
Particularly, Abdulsalam et al. [2014] performed their tests on a workstation, Rashid
et al. [2015] used an embedded system, and Chen and Zong [2016] conducted their
experiments on a smart-phone. However, Abdulsalam et al. and Chen and Zong used
similar testing parameters, as depicted in Table VII. Furthermore, Abdulsalam et al.
also compared the energy implications of four memory allocation methods (i.e., malloc,
new, array, and vector) where they presented malloc as the most energy- and run-
time-performance-efficient.

In their experiment, Chen and Zong utilized the Native Development Kit9 tool-set
for executing native code such as C and C++ inside Android applications. The derived
output, by both Abdulsalam et al. and Chen and Zong, is that C and C++ achieved sig-
nificant energy savings and, also, reduced execution time against the other program-
ming languages. Also, both works showed that the run-time compiler optimization flag
–O3, had the most significant energy savings and increased run-time performance for
workstation and smart-phone applications. Moreover, for Java applications, Chen and

8https://github.com/stefanos1316/Proof for Survey/blob/master/Programming Languages Average Values.txt
9https://developer.android.com/ndk/index.html
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Zong showed that the use of Android Run-Time instead of Dalvik run-time environ-
ment, contributed to energy and run-time performance results similar to the C and
C++ implementations.

In the context of embedded systems, Rashid et al. performed an experiment to com-
pare the energy and run-time performance implications of four sorting algorithms
written in ARM-assembly, C, and Java. By performing their experiments on a Rasp-
berry Pi,10 the authors showed that the implementations of ARM-assembly achieved
the most energy-efficient results viz-a-viz the C and Java implementations. Likewise,
Rashid et al. presented Java as the most energy-hungry among the selected program-
ming languages.

Table VI illustrates the superiority of compiled programming languages against the
interpreted and semi-compiled,11 in terms of energy consumption and run-time per-
formance. Java and Python suffer the most from high energy consumption and low
run-time performance. The use of an interpreter makes Python slower and less energy-
efficient, because it has to interpret source code for each execution. Moreover, the dy-
namic compiling, library linking, and interpretation of byte-code in JVM are additional
burdens on the execution of Java programs. However, Chen and Zong showed that the
use of the Android Run Time environment could reduce the energy consumption and
increase run-time performance of Android applications.

A limitation that we observed, for all the discussed works, is the lack of informa-
tion regarding the versions of the employed compilers, interpreters, modules, and li-
braries used in the experiments. Additionally, we did not find any research study that
compares the energy consumption and run-time performance implications of the same
application across different versions of compiler, run-time engine, or interpreter.

Table VIII. Data Structures Energy-Performance Impact

Collection Collection Data Structure Avg. Energy Selected Source
Interface Library Impact (%) Apps

C5 HashedLinkedList 23.27 Appsa [Michanan et al. 2016]
JCF AttributeList 24.88 CEBb [Pereira et al. 2016]

ArrayList 38 Gson
JCF LinkedList −309 SETSc [Hasan et al. 2016]List

JCF LinkedHashMap 50.16 CEBb [Pereira et al. 2016]
JCF ConcurrentHashMapV8 17.8 XALANMap
JCF ConcurrentHashMapV8 9.32 TOMCAT [Pinto et al. 2016]

C5 HashSet 31.44 Appsa [Michanan et al. 2016]
Set JCF LinkedHashSet 12.5 CEBb [Pereira et al. 2016]

Queue JCF

PriorityQueue, Linked-
TransferQueue, Con-
currentLinkedDeque,
LinkedBlockingDeque,
ConcurrentLinkedQueue

7.5

Appsd [Manotas et al. 2014]

Bag C5 HashBag 16.93 Appsa [Michanan et al. 2016]
a A* Path Finder, Huffman Encoder, Genetic Algorithm
b https://github.com/greensoftwarelab/Collections-Energy-Benchmark
c Stock Exchange Trading Simulator
d Barbecue, Jdepend, Apache-xml-security, Joda-Time, Commons Lang, Commons CLI

10https://www.raspberrypi.org/
11Semi-compiled languages compile source code into intermediate code and execute it on a VM.
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4.5. Data Structures
A data structure is a way to organize, manage, and store data for further process or
analysis. This Section consists of Empirical Studies and Tooling Support for data struc-
tures. In the Empirical Studies part, we discuss works trying to identify which data
structures are the most energy-efficient for particular cases. For the Tooling Support,
we show tools that inform a practitioner which data structure to select to reduce energy
consumption. Table VIII summarizes works on the data structures collection interface
and library, energy consumption, and tested applications for the relevant source.

4.5.1. Experimental Studies. By conducting experimental studies, Pereira et al. [2016],
Hasan et al. [2016], and Pinto et al. [2016] identified some positive and negative cases
concerning the energy consumption of various data structures. The authors evaluated
the energy consumption of data structures from different interfaces, but mostly from
the Java Collection Framework (JCF).

Pereira et al. performed an experimental study to evaluate the energy efficiency of
different JCF interfaces methods such as search, iteration, removal, and insertion. By
manually replacing data structures in applications, the authors obtained significant
energy savings as illustrated in Table VIII. Because the authors of the above work
report an extensive list of results, we compared the energy consumption of the most
and least energy-efficient interface,12 and we present in Table VIII the data structure
with the most energy-efficient methods for each interface.

By examining the memory usage and analyzing byte-code traces of Android appli-
cations, Hasan et al. evaluated the energy consumption of different collection types.
Apart from JCF, the authors used data structures from Apache Commons Collections
(ACC) and Trove.13 As an outcome, the authors showed that energy consumption starts
to diverge among the data structures only when the number of elements they contain
is above 500. Additionally, the authors noted for the data structures with primitive
data types (found in Trove collection) that, while consuming less memory than objects,
they are more energy-inefficient in most of the cases.

Similarly, Pinto et al. used 13 thread-safe and three non-thread-safe implementa-
tions of JCF. The authors tested the above data structures by utilizing distinct configu-
rations such as the number of threads, initial capacity, and load factor. As a result, the
authors observed that the proper data structure selection and the number of threads
(for most of the thread- and non-thread-safe implementations) can decrease applica-
tions energy consumption. For example, when the authors replaced the HashTable in-
stances with ConcurrentHashTableV8, in real-world benchmarks, they achieved signif-
icant energy savings.

Overall, Pereira et al. showed that the same kind of method implementations (e.g.,
add, remove, search) affect the energy consumption of data structures in a different
way. In Table VIII, we can see that Pereira et al. achieved the highest energy savings
in their experiments. However, compared to Hasan et al. and Pinto et al., Pereira et al.
used micro-benchmarks and not real-world applications. Pinto et al. examined the en-
ergy impact of real-world applications by i) replacing non-thread-safe with thread-safe
data structures and ii) changing the number of threads. This helped them to achieve
substantial energy savings as illustrated in Table VIII. Furthermore, the results by
Hasan et al. reveal the negative impact of unwise data structure selection which can
significantly affect energy consumption (see Table VIII).

4.5.2. Tooling Support. Predicting the most energy-efficient data structures for a given
problem can decrease energy consumption. To this line, Michanan et al. [2016] intro-

12https://github.com/stefanos1316/Proof for Survey/blob/master/Pereira Data Structure.txt
13http://trove.starlight-systems.com/
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duced GreenC5, a tool that can predict which data structures among the Copenhagen
Comprehensive Collection Classes for C# (C5) collection can reduce application energy
consumption based on the system’s workload. GreenC5 is composed of a predictive
algorithm based on machine learning and neural network models. As shown in Ta-
ble VIII, Michanan et al. achieved energy savings for real-world applications.

Manotas et al. [2014] introduced SEEDS (also discussed in Subsection 4.3.2), a deci-
sion support framework that can dynamically evaluate Java collection types and mod-
ify them to reduce the energy consumption of an application. To do that, SEEDS creates
instances of an application under development using different queue data structures,
to find the most energy efficient ones. This helped Manotas et al. gain energy savings,
in real-world applications, while choosing the proper queue type data structures.

For the tooling support, we observe several shortcomings such as limited number
of collection types (SEEDS is available only for queue) or focus on specific collections
(GreenC5 uses only the C5 collection). However, these tools can assist a developer for
manually selecting and experimenting with various data structures to obtain sufficient
energy savings. Moreover, further support on various data structure types and differ-
ent collections can make such tools more beneficial and attractive to the developers.

Table IX. Code Practices Energy-Performance Impact

Coding Practice Implication (in %) Operating Source
Practice Practices Energy Performance System

36–52 33–38 Android a [Tonini et al. 2013]For loop with length 10 avg. – Android 4.2 [Li and Halfond 2014]
Efficient query us-
age

25.1 avg. 24.9 avg.

Put application to
sleep

8.48 avg. 6 avg. Linux distro [Procaccianti et al. 2016]
Good

Change macros to
function calls, loop
unrolling, reducing
lookUp tables sizesb

179.3 avg. – – [Grossschadl et al. 2007]

24–27 24–30 Android a [Tonini et al. 2013]Avoid setters & set-
ters 30–35 – Android 4.2
Invoke static meth-
ods

15 avg. – Android 4.2 [Li and Halfond 2014]

Use of relational
database

Bad

Use of unnecessary
views and widgets

– – Android 4.2 [Linares-Vásquez et al.
2014]

a Used Android 2.3.6 for a Samsung Galaxy Y Pro Duo, Android 4.0.3 for an Asus Tablet, and
Android 4.0.4 for a Motorola Tablet

b Comparing RC6 against Twofish, also run-time performance was calculated in clock cycles
instead of time, therefore, we did not adding it in our results

4.6. Coding Practices
Best coding practices are sets of rules, formally or informally, established from various
coding communities that help software practitioners to improve software quality. In
this Section, we discuss works on empirical evaluation that examine the energy con-
sumption of coding practices. Table IX summarizes results identified from the related
works as “Good” and “Bad” coding practices. By the terms “Good” and “Bad”, we refer
to coding practices that may impact a program’s readability, maintainability, efficiency,
and usability positively or negatively, respectively.
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In terms of embedded systems, Grossschadl et al. [2007] evaluated the run-time
performance, energy consumption, memory usage, and code size of five block ciphers,
(i.e., RC6, Rijndael, Serpent, Twofish, and XTEA) on a StrongARM SA-1100 processor.
The authors modified the existing source code of the cipher algorithms (to reduce their
lines of code) by:

• Replacing macros with function calls.
• Using loop unrolling in the encryption and decryption functions.
• Replacing T-lookup with forward and inverse S-box tables and reducing their sizes.

Their results show that the block ciphers XTEA and RC6 (which had the smallest
code size) were the most energy-efficient, offered the best run-time performance, and
utilized less main memory for the encryption and decryption tasks.

In their experiment, Tonini et al. investigated the energy efficiency of best practices
for Android development. Their results indicate that the proper use of for loop and
getters/setters can improve energy consumption. Initially, the authors performed ex-
periments by using different variations of for loop, i.e., for-each, when the loop’s ter-
mination condition is i) calculated at each iteration, and ii) when it is passed as a vari-
able. In addition, the author evaluated scenarios with and without getters/setters
to access the class fields. Their results show significant energy savings by using a
variable as the loop termination condition and accessing class variables without using
getter/setter functions (see Table IX).

Likewise, Li and Halfond checked practices such as HTTP request bundling with
specific size and memory usage, and performance tips. Particularly, for the perfor-
mance tips, the authors inspected coding practices, obtained from the Android devel-
oper forum.14 The application of coding practices helped Li and Halfond to obtain no-
table energy savings as illustrated in Table IX. The practice of avoiding calculating
a data structure’s length in a loop proved beneficial since, having the loop’s termina-
tion condition in a variable saves energy by bypassing the calculation of the length
at each iteration. The practice of direct field access also proved beneficial because no
additional function call is required from the system, unlike the case where a field
value is retrieved through method invocation. Finally, the practice of static invocation
proved energy-efficient because calling a method statically saves energy as it avoids
the lookup overhead for calling methods through an existing object.

Android offers a variety of Application Programming Interface (API) calls and if not
used efficiently they can contribute in increased energy consumption [Linares-Vásquez
et al. 2014]. In their study, Linares-Vásquez et al. performed an analysis on 55 An-
droid applications from various domains and they listed the most energy-inefficient
API methods. Moreover, the authors suggested a list of practices that can yield energy
savings by effectively using API calls. To obtain their results, the authors correlated
timestamps of method execution traces with energy consumption measurements. After
analyzing their results, they identified 133 energy-greedy APIs out of the total of 807.
From the energy-greedy APIs, 61% are related to graphical user interface and image
manipulation, while the remaining 39% fall under the category of database. In conclu-
sion, the authors highlighted that the unnecessary refreshing of views (e.g., redrawing
a view upon receiving new data) and widgets can consume a significant amount of en-
ergy. In addition, they highly recommend users to avoid relational databases, such as
SQLite,15 when it is not of paramount importance.

Two best practices were recommended and evaluated by Procaccianti et al. [2016].
The selected practices were put the application to sleep, i.e., put processes or threads

14https://developer.android.com/training/articles/perf-tips.html
15https://www.sqlite.org/about.html
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on sleep state if they are waiting for I/O operations or they are no longer active, and
use efficient queries i.e., avoid the use of expensive energy operations such as ordering
or indexing when not needed. As an outcome, the authors achieved energy efficiency
by using both practices and, also, increased run-time performance (see Table IX).

The results in Table IX show that the usage of for with a given length size con-
tributes to energy savings from 36% up to 52% according to Tonini et al. and Li
and Halfond, respectively. Furthermore, in both works the authors avoided the use
of getters/setters and saved energy equal to 24–27% [Tonini et al. 2013] and 30–
35% [Li and Halfond 2014]. Although both studies used micro-benchmarks, their re-
sults offer a different scale of energy savings. This may have occurred because they
employed different hardware devices, distinct Android versions, and different tools to
obtain their energy measurements. From Table IX, we can also observe that Grosss-
chadl et al. achieved significant energy savings (i.e., 179%) by using the corresponding
coding practices. However, it should be noted that the authors compared the block
ciphers with one another instead of the original and optimizated versions.

To sum up, there are opportunities for energy consumption and run-time perfor-
mance improvements even by applying minor code changes such as passing a variable
in a loop’s termination condition or by invoking a method statically [Tonini et al. 2013;
Li and Halfond 2014]. Moreover, the proper API selection that demands fewer system
resources can also reduce energy consumption, according to Linares-Vásquez et al. Ad-
ditionally, Procaccianti et al. improved energy consumption and run-time performance
by reducing the use of expensive database operations (when these were not mandatory)
and putting applications to sleep (when they were not performing any action).

5. VERIFICATION
Here, we discuss a range of tools to measure and test software’s energy and power
consumption after the development of an application. We divide the collected works
into Benchmarks and Monitoring Tools in Sections 5.1 and 5.2, respectively.

Table X. Benchmarks Related-Work Information

Benchmark
Suite

Target
Platform

Energy Correlca-
tion With

Optimization Level Source

GBench Linux Hardware Compo-
nents

Data memory move-
ment, block size,
number of cores

[Subramaniam and Feng 2012]

ALEA Linux Basic code blocks

Power capping,
DVFS, compiler op-
timization, thread
throttling

[Mukhanov et al. 2015]

AxBench Linux Hardware compo-
nents

Source code via ap-
proximation [Yazdanbakhsh et al. 2017]

PowerBench TinyOS
Each node of the
test-bed

– [Haratcherev et al. 2008]

5.1. Benchmarks
Benchmarks are tools consisting of two main components: i) a profiling tool, respon-
sible for obtaining instructions used from a specific execution and ii) a performance
benchmark, that generates workloads for a system. The above components combined,
perform energy consumption measurements. Table X summarizes collected informa-
tion in terms of target platform, energy measurements correlation with hardware or
software components, optimizations applied, and the related resources.
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PowerBench is a scalable test-bed infrastructure that benchmarks and retrieves
power consumption traces, in parallel, from various wireless sensor nodes of a clus-
ter [Haratcherev et al. 2008]. To do that, PowerBench utilizes particular hardware and
software components to offer an off-line processing, analysis, debugging, and visual-
ization of the elicited power measurements. The features of such an approach can aid
developers detect power consumption fluctuations and anomalies in clusters and com-
plex IoT environments.

Subramaniam and Feng [2012] proposed Green Benchmark (GBench), an approach
that employs the Load Varying-LINPACK16 that produces a variety of workloads to
evaluate the energy consumption of a system. The authors tested GBench with differ-
ent configurations such as block size, work-loads, number of cores, and memory access
rate. As an effect, they detected a correlation between energy consumption and run-
time performance for the second level (L2) of cache misses, on specific workloads.

Mukhanov et al. [2015] suggested Abstract-Level Energy Accounting (ALEA), a
highly accurate (1.4% of error mean) portable tool that retrieves energy measurements
from any micro-processor architecture. At its core, ALEA has a fine-grained energy pro-
filing tool that retrieves measurements from basic code blocks. For evaluation, the au-
thors employed well-known benchmark suites such as SPEC 2000,17 SPEC,18 OMP,19

etc., and analyzed the relation between basic code blocks’ energy consumption and
cache accesses to identify energy hot-spots. As a result, by using ALEA, the authors
achieved 37% of energy savings, on some of the mentioned benchmarks, through differ-
ent kinds of energy-efficient strategies and adjustments, e.g., concurrency throttling,
thread packing.20 Moreover, they revealed a strong correlation between energy con-
sumption and cache access rate.

AxBench, proposed by Yazdanbakhsh et al. [2017], is a benchmark suite that sup-
ports tests in diverse domains such as finance, signal processing, image processing,
machine learning, and so on, aiming to evaluate systems’ run-time and energy perfor-
mance by exploiting approximation techniques. Specifically, the approximation tech-
niques supported by AxBench consist of loop perforation and neural processing
units. AxBench obtains energy measurements of the CPU, GPU, and Axilog hardware
[Yazdanbakhsh et al. 2015]. AxBench offers 1) the feature to test various levels of the
computing stack (software and hardware), 2) various test inputs, and 3) application-
specific quality metrics, i.e., average relative error for numeric output, miss rate for
boolean result, and image difference. However, to perform benchmarking, a user has
to identify and manually annotate regions of code that can tolerate imprecision.

The major difference between GBench and ALEA, is that ALEA correlates energy
measurements with basic code blocks, while GBench maps the energy consumption of
the entire application to hardware components. AxBench is equipped with benchmarks
for CPU and GPU aiming to offer a fine-grained understanding of their energy and
run-time performance implications. In contrast to the above benchmarks, PowerBench
is the only one to evaluate the energy consumption of an IoT-like infrastructure and
cluster.

5.2. Monitoring Tools
To derive the energy consumption of a computer system, two approaches currently ex-
ist: 1) indirect energy measurements through estimation models or performance coun-

16https://www.top500.org/project/linpack/
17http://www.spec2000.com/
18https://www.spec.org/
19https://www.spec.org/omp2012/
20collecting threads under a specific number of cores
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ters or 2) direct measurements, through hardware energy analyzers and sensors. In
this Section, we discuss tools that are using indirect and direct approaches to perform
measurements, some of the tools we present, analyze running applications or system
calls to estimate energy consumption. However, compared to the source code analysis
tools presented in Section 4.3, the energy monitoring tools only report the energy con-
sumption of an application without pointing out energy hot-spots or providing hints for
improving the spotted deficiencies. Tables XI and XII present the discussed software
and hardware energy monitoring tools. The tables depict a variety of information such
as tool names, target platform, measurement types, sampling intervals, and median
error rates.

Table XI. Software-based Monitoring Tools Related-Work Information

Tool’s Name Target
Platform

Measurement
Type

Sampling
Rate (msec)

Median Er-
ror Rate

Source

Jalen Linux Energy 500 – [Noureddine et al. 2012b]
PowerAPI Linux Energy 500 0.5–3 [Bourdon et al. 2012]
jRAPL Linux Energy 1 1.13 [Liu et al. 2015]
Jolinar Linux Energy 500 3 [Noureddine and Rajan 2015]
RAPL Linux Energy 1 3 [David et al. 2010]

SoCWatch
Windows,
Linux, &
Android

Power 1–1000 – [Pantels 2015]

PowerGadget Windows
& Linux Power 1–1000 – [Pantels et al. 2014]

JouleMeter
VMs &
Windows Power 1000 5 [Liu et al. 2010]

VMeter VMs Power – 6 [Bohra and Chaudhary 2010]
BitWatts VMs Energy 500 2 [Colmant et al. 2015]
PowerBooter Android Power – 0.8 [Zhang et al. 2010]
GreenOracle Android Energy – 10 [Chowdhury and Hindle 2016]
AEP Android Power – – [Chen and Zong 2016]
PETrA Android Energy 1000 0.04 [Di Nucci et al. 2017]

5.2.1. Software Energy Monitoring Tools. We use the term “software energy monitoring
tools” for software-based analyzers that utilize performance counters or estimation
models to measure the energy consumption of running applications. We analyze the
monitoring tools concerning their features, limitations, architecture (energy estima-
tion model), and supported OS. Moreover, we further classify the software energy mon-
itoring tools according to the platform they target into three categories: 1) workstations
and servers, 2) VMs, and 3) smart-phones.

Workstations and Servers. Running Average Power Limit (RAPL) monitors and con-
trols energy consumption via performance counters [Pandruvada 2014]. By utilizing
the Linux kernel pseudo file system (sysfs), RAPL exposes kernel subsystems, hard-
ware devices, and device driver information from the kernel to userspace allowing the
estimation of the software’s energy consumption. Liu et al. [2015] introduced jRAPL,21 a
framework that combines RAPL and the Java Native Interface to measure the energy
consumption of CPU, RAM, and Package22 components for a Java application. Apart
from jRAPL, Pantels et al. [2014] and Pantels [2015] introduced the tools PowerGadget
and SoCWatch, respectively. Both tools are using RAPL to elicit power consumption
from the CPU’s performance counters. PowerGadget retrieves package power metrics

21https://github.com/kliu20/jRAPL
22the core (all CPU cores) and the un-core (GPU, LLC, etc.)
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exposed by the CPU and GPU, and can be integrated within a user’s application through
a C++ API. SoCWatch provides power-related information for the CPU’s and GPU’s C-
and P-state residencies. All the discussed RAPL-based tools have a high sampling rate
and can retrieve a substantial number of samples per millisecond as shown in Table XI.
However, tools incorporating RAPL work under specific hardware limitations such as
particular microprocessor architecture [Pandruvada 2014]. For instance, PowerGadget
is compatible only with Intel’s second generation CPUs, and it is not yet supported for
architectures such as Skylake, Broadwell, and Haswell.

To estimate application energy consumption, Noureddine et al. [2012b], Bourdon
et al. [2012], and Noureddine and Rajan [2015], proposed a number of tools. Specif-
ically, Noureddine et al. proposed Jalen,23 a Java agent attached to an application,
that gathers energy measurements after the initialization of the JVM. Jalen measures
selected methods and classes. Additionally, it provides measurements on explicit hard-
ware components (e.g., CPU and HDD) and estimates the energy consumption of soft-
ware by analyzing executed Java instructions. Jolinar,24 is a Java-based tool for mon-
itoring energy consumption at the process level. According to its developers, Noured-
dine and Rajan, the tool measures the energy consumption of specific hardware compo-
nents such as CPU, RAM, and HDD. However, both Jalen and Jolinar use an old Intel’s
energy module that is not supported by the Linux kernel versions 3.10 and above un-
less Intel p state is disabled. 25

A coarse-grained tool for monitoring process-level energy consumption is
PowerAPI.26 PowerAPI is a Scala-based middleware that implements an API for mon-
itoring applications at real time [Bourdon et al. 2012]. It estimates the energy con-
sumption of various hardware components (CPU, RAM, HDD, etc.). Noureddine et al.
[2012a] evaluated its accuracy against the powerspy2 power analyzer and showed a
low median error rate (i.e., 0.5–3% ). A weakness of PowerAPI is that it expects time
duration from a user to collect energy measurements. Likely worst-case scenarios here
are 1) over-collection of measurements (when an application elapses and the tool still
measures the idle time) and 2) the incomplete collection of measurements (when an
application is still running but the tool’s given duration time is too short).

A noteworthy fact is that both Jalen and Jolinar have PowerAPI as their core com-
ponent for extracting energy measurements. However, PowerAPI exposes energy mea-
surements of an application at the system process-level, whereas Jalen and Jolinar
correlate the collected energy-related information with Java applications. Compared
to the tools proposed by Pandruvada, Liu et al., Pantels et al., and Pantels, the tools
above are estimating energy and power consumption through instrumentation profil-
ing, while RAPL utilizes performance counters. Moreover, as shown in this Section most
of the tools lack interoperability which can be a hardware or software limitation.

Virtual Machines. Joulemeter, a tool introduced by Liu et al. [2010], fetches energy
measurements from VMs, servers, desktops, laptops, and specific applications by track-
ing resource usage from various hardware components such as CPU, RAM, HDD, and
screen. Its model estimates energy consumption by utilizing the VM’s resource tracing,
which in turn obtains information through the performance counters. Joulemeter is
not limited to energy consumption measurements; additionally, it offers the feature
of per-VM power capping, sleep, and remote wake-up control management procedures

23https://github.com/adelnoureddine/jalen
24https://github.com/adelnoureddine/jolinar
25https://github.com /stefanos1316/Proof for Survey/blob /master/Emails%20from%20Nourredine%20Adel.txt
26https://github.com/Spirals-Team/powerapi
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that significantly lessen the energy consumption of a server. However, Joulemeter is
not supported by an OS newer than Windows 7.27

Bohra and Chaudhary [2010] presented VMeter, a VM power modeling method for
estimating energy consumption of various components such as CPU, cache, DRAM, and
HDD. The tool monitors regularly the system’s resource usage and calculates energy
consumption by employing a power model, which has minimal overhead on the sys-
tem’s total energy consumption (i.e., 0.012%). To extract resource usage information
from a VM, VMeter utilizes the performance counters and a disk monitoring tool.

BitWatts28 is a middleware solution that calculates the energy consumption of an
application inside a VM via an energy estimation model [Colmant et al. 2015]. It is
an extension of the PowerAPI toolkit [Bourdon et al. 2012] and is designed to collect
energy measurements from modern and complex microprocessors that support multi-
cores, hyper-threading, DVFS, and dynamic overclocking. A strong feature of BitWatts
is the collection and aggregation of energy measurements from multiple processes that
are located in a distributed environment.

BitWatts energy model was compared viz-a-viz PowerSpy29 Bluetooth energy me-
ter and RAPL. As an outcome, BitWatts measurements were in the scale of 2% median
error rate, which is the lowest against VMeter and Joulemeter. Also, compared to VMe-
ter and Joulemeter, BitWatts can be used to analyze the energy consumption of more
complex environments such as IoT infrastructure and data centers.

Smart-Phones. Measuring the energy consumption of mobile devices is done in var-
ious ways. Zhang et al. [2010] introduced PowerBooter, an on-line energy estimation
model, which calculates energy consumption by combining measurements from bat-
tery’s voltage sensors and discharge rate. Thus, PowerBooter estimates energy con-
sumption without utilizing external hardware power meter. By combining Power-
Booter and PowerTutor,30 the authors obtained energy measurements based on the
activity of various hardware components such as CPU, LCD/OLED, GPS, Wi-Fi, and cel-
lular network components.

Similarly, Chen and Zong [2016] developed the Android Energy Profiler (AEP), a tool
that correlates process resource usage activities with voltage and current information.
The voltage and current information is generated through a smart-phone’s built-in
voltage sensor and is used by AEP to estimate energy consumption. AEP is not lim-
ited to energy consumption measurements; it can also provide run-time performance
results. However, in contrast to PowerTutor, AEP provides energy measurements only
for the CPU and main memory. A pitfall of AEP is a run-time performance degradation
of around 25%, that incurs from the data collection process.

Another tool to obtain energy measurements from smart-phones is GreenOra-
cle [Chowdhury and Hindle 2016]. GreenOralce is an energy estimation model which
after being trained with a variety of Android applications, it can obtain energy mea-
surements for any mobile application. The introduced model, once trained, is usable by
application developers to retrieve energy measurements without the need of an exter-
nal instrumentation tool. To estimate energy consumption, GreenOracle uses dynamic
tracing on system calls (i.e. strace) and CPU utilization.

Profiling Energy Tool for Android (PETrA), is a software-based energy profiling
tool [Di Nucci et al. 2017]. A feature of the tool is the fine-grained energy measure-
ments that are obtained at the method level. Additionally, compared to prior work,

27https://social.microsoft. com/Forums/en-US/home?forum=joulemeter
28https://github.com/mcolmant/powerapi/tree/BitWatts
29http://www.alciom.com/en/products/ powerspy2-en-gb-2.html
30https://github.com/msg555/PowerTutor
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PETrA does not require calibration. PETrA’s precision was validated on 54 Android ap-
plications and compared against a hardware-based energy consumption toolkit, the
Monsoon. The outcome shows that PETrA’s energy measurements deviate little from
Monsoon’s (see Table XI).

In contrast to all the preceding tools, PowerBooter offers energy measurements for
a large number of smart-phone components. However, in contrast to PowerBooter and
PETrA, GreenOralce suffers from high median error rate (see Table XI). Compare to the
above, GreenOracle has a sophisticated energy estimation model that, once trained,
offers energy measurements for various Android applications.

Table XII. Hardware-based Monitoring Tools Related-Work Information

Test-bed’s
Name

Target
Platform

Measurement
Type

Sampling Rate
(in sec.)

Median Er-
ror Rate

Source

Atom LEAP Linux Energy 1 – [Peterson et al. 2011]
SEFLab Windows Power, Energy 1 1% [Ferreira et al. 2013]
GreenMiner Android Power 1 insignificant [Hindle et al. 2014]

5.2.2. Hardware Energy Monitoring Tools. Hardware energy analyzers or sensors can also
retrieve energy consumption measurements from a computer system. However, the
disaggregation of the coarse-grained energy measurements into software or hardware
components is a demanding task. The hardware energy monitoring tools are typically
no-stand-alone tools that require additional hardware components such as an external
device to obtain power or energy measurements. In this Section, we describe some
hardware energy monitoring tools for workstations, servers, and smart-phones.

Workstation and Server Monitoring Tools. Software Energy Footprint Lab (SEFLab)
aims to capture the energy consumption measurements of a computer system and map
them to its hardware components (i.e., CPU, RAM, HDD) [Ferreira et al. 2013]. Atom
Low-Energy Aware Platform (LEAP) is a test-bed that is capable of measuring the en-
ergy consumption of small code segments in the kernel and userspace [Peterson et al.
2011]. Both tools make use of the Data AcQuisition device (DAQ), an external energy
profiling tool that obtains coarse-grained measurements from a computer system. Af-
ter obtaining the energy consumption of an application, both tools are trying to corre-
late the retrieve measurements with time-stamps and system resource usage. More-
over, SEFLab uses Joulemeter [Liu et al. 2010] to compare its accuracy against the
DAQ energy profiler. The major distinction between the two approaches is that Atom
LEAP tries to map the collected energy consumption of an application with software
components, while SEFLab maps them with various hardware components. However,
to utilize one of the above approaches, a number of tools and set up is required.

Smart-phone Monitoring Tools. GreenMiner is an experimental platform introduced
by Hindle et al. [2014], which retrieves energy consumption of a smart-phone through
scheduled tests. All the tests are scheduled by a web service, while a Raspberry Pi31

is responsible for launching test scripts on a smart-phone by using the Android Debug
Bridge interface. Once the tests are launched, an INA21932 chip is used to record the
smart-phone’s current and voltage measurements. Afterwards, an Arduino33 device
is responsible for fetching, calculating, and storing all power measurements from the

31https://www.raspberrypi.org/
32http://www.ti.com/product/INA219
33https://www.arduino.cc/
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INA219 chip. Subsequently, the Raspberry Pi collects the energy consumption mea-
surements and meta-data from the Arduino device and forwards them to a server
where a web service aggregates, analyzes, and stores the experiment’s data. Addition-
ally, GreenMiner acts as a continuous integration tool for running tests and comparing
the energy consumption of different repositories. Through data aggregation and analy-
sis, it provides insights that can guide developers in determining energy consumption
change through the evolution of source code at particular product versions. Similarly
to the workstation and server monitoring tools presented in the previous paragraph,
GreenMiner also requires a number of tools and a set up to estimate applications en-
ergy consumption.

6. MAINTENANCE
Maintenance is the process of enhancing or fixing errors in a software after its de-
ployment. For the maintenance phase, we discuss techniques and tools for refactoring
source code aiming to demonstrate energy savings. In the context of SDLC for energy
efficiency, refactoring is the practice that aims to optimize energy consumption of ap-
plications through code-level modifications without altering the underlying code struc-
ture. In this line, this is also used for source code analysis during software develop-
ment to detect energy hot-spots or bugs (as discussed in Section 4.3). In this Section,
we present refactoring techniques applied after the deployment phase (i.e., during the
maintenance phase).

Table XIII. Refactoring Energy-Performance Impact

Refactoring Techniques Implications Test Cases Source
Energy (%) Performance

Dead Local Variable, Non
Short Circuit,a Parameter
By Value, Repeated Con-
ditionals, Self Assignment
Variable

< 1 avg.
Energy Code Smells
are not affecting ex-
ecution time

Authors’
Apps e [Morisio et al. 2013]

Convert Local Variable
to Field,b Extract Local
Variable,cExtract Method,
Introduce Indirection,d In
line Method,g Introduce
Parameter Objecth

(−7.5)–4.54

There is no rough
correlation between
runt time perfor-
mance and energy
consumption for
JVM 6 and 7

Selected
Apps f [Sahin et al. 2014]

Replace Method with
Method Object and En-
capsulate Collection

−7.91–6.99 –
M.Fowler’s
Code Sam-
ples i

[Park et al. 2014]

Loop Unrolling, Loop
Unswitching, Method
Inline

6.4–50.21
Observed boost on
run-time perfor-
mance

Cocos2d
game en-
gine

[Li and Gallagher
2016]

a Using “&” and “||” cause all statements evaluation, in contrast to “&&” and “|| ||”
b Refactoring local variables to public class fields
c Occurrences of the same expression can be replaced from a variable
d Redirecting all the method invocations to a newly created static method
e Use of mirco-benchmarks
f Commons-{Beanutils, CLI, Collections, IO, Lang, Math}, Joda-Convert, Joda-Time, Sudoku
g In place of the method’s invocation its source code is added instead
h Created a new class at the top level (super class)
i Code Samples by Fowler et al. [1999]
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6.1. Empirical Evaluation of Code Refactoring
Here, we consider empirical evaluations of refactoring techniques and patterns for
energy-performance optimization that software practitioners may employ to reduce
applications energy consumption. Table XIII depicts some of the authors’ collected re-
sults34 concerning the relevant refactoring method’s energy and run-time performance
implications, and their test cases.

Fowler et al. [1999] introduced the concept of code refactoring to improve under-
standability, maintainability, and extensibility of existing source code. To this end,
Sahin et al. [2014] and Park et al. [2014] used the described patterns to perform em-
pirical studies that examine how certain code refactoring patterns affect an applica-
tion’s energy consumption. Both authors used distinct embedded systems, parameters,
and a number of smells for their empirical studies. Specifically, Sahin et al. evaluated
six widely known refactoring techniques on two Jave Virtual Machine (JVM) versions
(i.e., 6 and 7) over nine applications. Park et al. evaluated 63 out of the 68 refactoring
techniques over code samples proposed by Fowler et al. Sahin et al. concluded that
every refactoring method may increase or decrease the application’s energy usage;
apart from Extend Local Variables which always reduces energy consumption. Sim-
ilarly, Park et al. found that some of the refactoring code smells may alter positively or
negatively the energy consumption. Particularly, from the obtained results Park et al.
illustrated that 33 of the refactoring techniques lead to energy savings while the re-
maining 30 do not. Besides, the authors shared that the energy consumption between
Java versions, in the context of the refactoring techniques, is not consistent.

Energy Code Smells is a term stated by Morisio et al. [2013] relating to inefficient
implementation choices that increase energy consumption. Through their experiential
study, Morisio et al. aimed to determine a number of code smells [Fowler et al. 1999]
that can alter the energy, run-time performance, or even both of them. Hence, they
performed their experiment on existing code smells found in CppCheck35 and Find-
Bugs36 tools. To minimize the software noise from threads which may run in parallel
and subsequently affect energy measurements, the authors performed their experi-
ment on embedded system (Waspmote V1.1).37 By testing nine different refactoring
patterns, Morisio et al. inferred that only five of those reduce the energy consumption
by less than 1%, on average, (see Table XIII) while the remaining increase the energy
consumption or leave it intact. Nevertheless, the authors claim that no correlation ex-
ists between Energy Code Smells and Performance Smells apart from a single case (i.e.,
Mutual Exclusion OR).

The results depicted in Table XIII show that Morisio et al., Sahin et al., and Park
et al. elicited both gains and losses in energy consumption such as 1%, −7% to 5%,
and −8% to 7, respectively. We can observe that the results of Sahin et al. and Park
et al., used quite similar refactoring patterns, do not differ much even though they
used different languages to develop them (i.e., Java and C++, respectively). Morisio
et al. also employed the refactoring patterns introduced by Fowler et al. [1999]; how-
ever, they demonstrated only minor energy savings (less than 1%). Moreover, Morisio
et al. showed that the Energy Code Smells are not affecting Performance Smells or
vice versa. The above results suggest that the energy savings, achieved by refactoring
techniques, are very low. This fact highlights that the applied refactoring techniques

34concerning consistency for the research of Park et al. [2014], we added only the results of the highest and
lowest energy consumption since they investigated over 63 refactoring patterns.
35https://sourceforge.net/p/cppcheck/wiki/Home/
36http://findbugs.sourceforge.net/
37http://www.libelium.com/development-v11/
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are mainly focused on improving code maintainability, extensibility, and understand-
ability. Thus, they cannot offer any substantial gains regarding energy efficiency.

6.2. Tools for Refactoring
Work in this area aims provide maintenance by reducing energy consumption through
code refactoring patterns embedded in tools.

An energy optimization framework for Android applications introduced by Li and
Gallagher [2016] which focuses on lending energy optimizations through a set of refac-
toring strategies on the deployed source code. The proposed framework takes source
code as an input and analyzes it to retrieve energy-related data to correlate them
with basic code blocks. Afterwards, the framework spots energy hot-spots of the source
code and applies, either autonomously or through manual involvement, refactoring
strategies (e.g., Loop Unrolling, Loop Unswitching, Method In-line). Employing such a
refactoring tool can help a user to modify existing or legacy systems source code, so as
to reduce their energy consumption and increase run-time performance. The authors
evaluated their tool on real-world applications and obtained energy savings ranging
from 6% to 50%.

7. CONCLUSIONS
Overall, our analysis reveals that techniques and tools to provide energy efficiency
exist for each phase of the SDLC. However, for software practitioners to adopt and use
existing tools and techniques, interoperability, usability, and adequate support are
crucial factors. To this end, we point out a number of possible research challenges that
we identified from our study. In the following paragraphs, we analyze each of these
research challenges and we provide future research directions.

RC1. Selection of configurations and parameters.

Parallel programming is proven beneficial regarding energy consumption by applying
the appropriate configurations and parameters such as the number of threads, data
size, and data locality. As expressed by Kambadur and Kim, it is possible to gain
energy savings of 55% and run-time performance of 69% if application configurations
and parameters are tuned effectively. Likewise, as shown in Section 4, the utilization
of approximate techniques can bring an energy reduction of 10–50% for imprecision
tolerant applications. However, an open challenge for both parallel and approximate
computing is i) to locate portions of source code that can be optimized, and ii) choose
suitable parameters and configurations to reduce energy consumption. A possible
approach could be a source code analyzer that can label possible energy hot-spots and
suggest energy optimizations such as the selection of adequate number of threads or
identify portions that can benefit from approximate computing.

RC2. Limited investigation on diverse programming languages.

The same application developed in distinct programming languages varies concerning
energy usage and run-time performance (see Section 4). Programming languages
such as C and C++ might be challenging when it comes to memory management
safety and reliability; nevertheless, they do pay back the developers with lower energy
consumption and, at the same time, better run-time performance. Still, researchers
have investigated only a small portion of the available programming languages.
Others may benefit applications running on diverse computer systems and domains
such as (HPC and IoT).
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RC3. Appropriate data structure selection.

As presented in Section 4, selecting energy-efficient data structures is crucial, because
it can significantly affect the energy dissipation of an application. In some instances,
selecting the most efficient data structure in real-world applications, such as Google
Gson, Xalan, Tomcat, and Huffman Encoder resulted in energy savings of 38%.
However, knowing when to select particular data structures without the need of
experimenting is quite an ambitious and challenging task. Existing tools such as
SEEDS [Manotas et al. 2014] can suggest data structures for Java applications; but,
SEEDS is limited to queue collection interface selection and it is not yet available for
public use. A possible research direction here is to examine more data structures
types, identify which are more energy efficient for selected cases, and compose this
knowledge in the form of a refactoring tool that can suggest the replacement of
collection implementations.

RC4. Interoperability, usability, and precision for tooling support.

In Section 5, we found that most of the energy monitoring tools are oriented towards
specific CPU architectures or OSs making them difficult to use across diverse comput-
ing environments. Additionally, to configure these tools it often takes a great deal of
time and effort. For instance, in order to accurately retrieve energy measurements the
user has to be aware of configurations such as CPU voltage at a specific frequency. An-
other challenging task is software energy monitoring tool evaluation. To do so, many
researchers compare energy measurements fetched from hardware power analyzers
with the results of their proposed tools. However, it is hard to compare or correlate
these measurements because many hardware power analyzers have low sampling
frequency and collect energy measurements in a coarse-grained manner. To this end,
accurate and versatile software-based energy monitoring tools are of paramount
importance. This will promote a wider take-up from the software developers.

Future work should also consider the evolution of software development processes
by designing tools that are appropriate for agile software development. In this line,
energy-efficient software development approaches should be tightly integrated with
energy monitoring tools that continuously assess real energy consumption at the hard-
ware level and provide feedback to the development process which can be used to fine-
tune the source code for energy savings. Such a knowledge is crucial and mandatory
to allow software practitioners to pinpoint energy gains in ever more complex com-
puter systems and domains such as cloud environments, data centers, and large IoT
infrastructures.
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