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ABSTRACT
Motivation: Shifting from traditional local servers towards cloud
computing and data centers—where different applications are facil-
itated, implemented, and communicate in different programming
languages—implies new challenges in terms of energy usage.
Goal: In this preliminary study, we aim to identify energy implica-
tions of small, independent tasks developed in different program-
ming languages; compiled, semi-compiled, and interpreted ones.
Method: To achieve our purpose, we collected, refined, compared,
and analyzed a number of implemented tasks from Rosetta Code,
that is a publicly available Repository for programming chrestomathy.
Results: Our analysis shows that among compiled programming
languages such as C, C++, Java, and Go offers the highest energy
efficiency for all of our tested tasks compared to C#, vb.net, and
Rust. Regarding interpreted programming languages php, Ruby,
and JavaScript exhibit the most energy savings compared to Swift,
R, Perl, and Python.

CCS CONCEPTS
• Hardware → Power estimation and optimization; • Soft-
ware and its engineering → Software libraries and repositories;
Software design tradeoffs;
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1 INTRODUCTION
The increasing demands on services and computational applications
from ict-related products are major factors that contribute to the
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increase of energy consumption.1 Recent research conducted by
Gelenbe and Caseau [7] and Van Heddeghem et al. [14] indicates a
rising trend of the it sector energy requirements. It is expected to
reach 15% of the world’s total energy consumption by 2020.

Most of the studies, for energy efficiency, have considered energy
consumption at hardware level. However, there is much of evidence
that software can also alter energy dissipation significantly [2, 5, 6].
Therefore, many conference tracks (e.g. greens,2 eEnergy)3 have
recognized the energy–efficiency at the software level as an emerg-
ing research challenge regarding the implementation of modern
systems.

Nowadays, more companies are shifting from traditional local
servers and mainframes towards the data centers. Some of the
main characteristic of this approach is the pay-as-you-go feature,
elasticity, scalability upon heavy workloads, and the hosting of any
applications implemented in a variety of programming languages.
However, there is a limited number of research works that examine
the energy impact of programming tasks implemented in different
programming languages.

To identify trends and possible gains regarding the reduce of
energy consumption, during software development, we conducted
an empirical study using data from the Rosetta Code Repository.
Our goal is to elicitate energy usage from small tasks implemented
in a variety of well-known and most used programming languages.
To this end, our results show which of the interpreted and compiled
programming languages offer more energy efficient implementa-
tions for specific tasks. Moreover, we show the negative impact if
choosing an inefficient implementation.

The remainder of this paper is organized as follows. Section 2 de-
scribes: 1) our experimental setup, 2) our dataset’s cleaning method,
3) the software and hardware tools we used, and 4) our analysis
methodology. In Section 3, we present our preliminary results and
in Section 4 we discuss potential threats to validity. In Section 5, we
list prior work done in the field and compare it with ours. Finally,
we conclude in Section 6 and we present future research directions.

2 EXPERIMENTAL SETUP
In this Section, we describe our approach for conducting our ex-
periment and for retrieving measurements. Initially, we provide
information about the obtained dataset and the way we selected
1Although in the physical sense energy cannot be consumed, we will use the terms
energy “consumption”, “requirement”, and “usage” to refer to the conversion of elec-
trical energy by ict equipment into thermal energy dissipation to the environment.
Correspondingly, we will use the term energy “savings", “reduction", “efficiency", and
“optimization" to refer to reduced consumption
2http://greens.cs.vu.nl/
3http://conferences.sigcomm.org/eenergy/2017/cfp.php
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Table 1: Programming Languages, Compilers and Inter-
preters

Programming Compilers and
Languages Interpreters version

Compiled C, C++ gcc version 6.3.1 20161221-
Go go version go1.7.5
Rust rustc version 1.18.0

Semi- vb.net mono version 4.4.2.0 (vbnc)
Compiled C# mono version 4.4.2.0 (mics)

Java javac version 1.8.0_131
Interpreted JavaScript node version 6.10.3

Perl perl version 5.24.1
php php version 7.0.19
Python python version 2.7.13
R Rscript version 3.3.3
Ruby ruby version 2.3.3p222
Swift swift version 3.0.2

our tasks and refine it. Furthermore, we explain our experimental
setup, the hardware and software tools we used.

2.1 Dataset
In the context of this study, we used the Rosetta Code,4 which is a
publicly available programming chrestomathy site that offers 851
tasks, 230 draft tasks, and a collection of 658 different programming
languages. In general, not all tasks are implemented, and not all
tasks are possible to implement in all languages. For our study,
we cloned a Github Repository5 that contains all the currently
implemented tasks introduced in the Rosetta Code website.

To select popular programming languages, we consulted the
website of tiobe,6 a software quality company. Tiobe uses a search
query for index rating of the most popular programming languages
around the web on a monthly basis. This query is based on a for-
mula7 that uses the highest ranked search engines (according to
Alexa)8 and a number or requirements enlisted for the programming
languages. We decided to chose the top 15 programming languages
enlisted for June 2017. From the current list, we excluded program-
ming languages such as Delphi (not available for Linux OS we are
using) and Assembly (different implementations between processor
architectures). In contrast, we included Rust in our dataset that is
a memory safe programming language and is gaining vast popu-
larity in the web. Therefore, we ended up with 14 programming
languages as it is illustrated in Table 1.

To select the examined tasks, we developed a shell script (see
Subsection 2.2.2) to identify which of the 851 tasks offer the most
implementations for the programming languages of our selection.
After launching our script, we obtained around 29 different tasks.
For the context of our preliminary study, we chose only nine tasks
implemented in the most of the programming languages of our
4http://rosettacode.org/wiki/Rosetta_Code
5https://github.com/acmeism/RosettaCodeData
6https://www.tiobe.com/tiobe-index/
7https://www.tiobe.com/tiobe-index/programming-languages-definition/
8http://www.alexa.com/

selection. The selected tasks were: array-concatenation, classes (cre-
ating an object and calling a method to print a variable’s value),
url-encoding and decoding, bubble-, quick-, insertion-, merge-, and
selection- sorting algorithms. Moreover, to further refine our dataset
we used the following steps:
• Some of the tasks offered more than one implementation for
the same programming language. Thus, we had to browse
manually through each directory and remove them until we
had only one that is consistent with the other implemen-
tation. For instance, when most of the implemented tasks
used iterative implementation, we removed the ones using
recursion.
• The Java file names and their public names where differ-
ent which resulted in compilation error. Thus, we had to
manually change them.
• Some of the implementations did not have main classes, or
the same data with other tasks. Therefore, we changed the
source code to offer consistency.
• For some programming languages that do not offer the class
option such as C and Go, we used structs.
• Some of the tasks were relatively small and finished faster
than a second which makes it impossible for our power
analyzer to capture those results. Therefore, we added all
the selected tasks in an iteration loop of a million times.

After applying the above modifications on our dataset, we cat-
egorized our programming languages in three main categories,
namely, compiled, semi-compiled, and interpreted (see Table 1). For
the programming languages which offer a semi-compiled approach
such as Java, vb.net, and C#, we added them under the category of
compiled languages for our experiments. In addition, we compared
the compiled and semi-compiled implementations while having
scenarios with and without compiler optimizations.

2.2 Hardware and Software components
2.2.1 Hardware Components. The physical tools we used com-

prise: 1) portable personal computer (HP EliteBook 840 G3),9 2)
real-time electricity usage monitoring tool (Watts Up Pro (wup),10
and 3) embedded device (Raspberry Pi 3b).11

In general, there are two venues for retrieving energy consump-
tion from a computer-based system. On the one hand, this is achiev-
able by indirect energy measurements through estimation models
or performance counters, core component of software monitor-
ing tools. On the other hand, it is done via direct measurement,
hardware power analyzers and sensors. However, each of these
approaches has its own pitfalls. The direct approach , i.e., hardware
components, offers coarse-grained measurements for the whole
systems’ energy consumption and low sampling rate. The indirect
approach , i.e., software components, suffers from inaccuracy, lack
of interoperability, and additional system overhead. In our research,
we decided to use a direct approach such as wup since it does not
have software constrains and is relatively cheap to buy.

9http://www8.hp.com/us/en/products/laptops/product-
detail.html?oid=7815294#!tab=specs
10https://www.wattsupmeters.com/secure/products.php?pn=0
11https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
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Figure 1: Energy Consumption for Compiled Programming
Languages without Optimizations
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Figure 2: Run-time Performance for Compiled Program-
ming Languages without Optimizations

In regards to wup, it offers accuracy of ±1.5% and as minimum
sampling rate of a second. In order to retrieve power-related mea-
surements from the wup, we used a Linux-based interface utility
available in a Git Repository.12 This software helped us to retrieve
measurements such as timestamps, watts, volts, amps, and so on
through a mini usb interface attached on the wup. Afterwards, we
integrated its code in our script that runs all the tasks. In order to
avoid additional overhead in our measurements, we connected wup
mini-usb on a Raspberry Pi to retrieve power consumption from
our test-bed.

12https://github.com/pyrovski/watts-up

2.2.2 Software Components. To extract data, manage, and use
our Rosetta Code Repository, we developed a number of shell scripts
as enlisted below, which are publicly available on our Git Reposi-
tory.13

• script.cleanAll: removes the current instance of tasks in
the current working directory and copies the new one found
from in the parent directory.
• script.findCommonTasksInLanguages: provides a list of
tasks with the number of existing implementations in differ-
ent languages.
• script.createNewDataSet: filters the Rosetta Code current
dataset and removes programming languages and tasks not
added as command line arguments.
• script.fromUpperToLower: changes the current instance
of task directories and files from upper to lower case.
• script.compileTasks: compiles all tasks found under the
tasks’ directory and produces error reports if a task fails to
compile.
• script.executeTasksRemotely: executes all the tasks’ im-
plementations found under tasks’ directory. Moreover, it
sends command to wup (retrieves measurements and stores
them on remote host, through ssh) in order to start retrieving
measurements for each test case.
• script.createPlottableData: creates a single file that enlists
all the executed tasks with the energy consumption for each
implementation. In addition, we used ntp14 to synchronize
both system clocks which helped us to map our results of
run-time performance and energy consumption.
• script.plotGraphs: after retrieving our data we use this
script to plot our graphs. For plotting our graphs we used
Gnuplot,15 an open-source general purpose pipe-oriented
plotting tool.

Note that most of the scripts offer the –help option that shows a
list of available command line arguments and options. In addition,
we provide a readme.md file, available in our Repository, as a
guideline for using our scripts and reproducing the obtained results.

2.3 Retrieving Energy Measurements
After rebooting a computer system, it is necessary to wait for a
short period of time to reach a stable condition (where the energy
usage is stable) in order to prevent additional noise in our results.

As an secondary step for our experiment, we shut down back-
ground processes, as suggested by Hindle [8], found in modern os
(Operating System) such as disk defragmentation, virus scanning
software, cron jobs, automatic updates, disk indexing, document
indexing, rss feed updates, and so on to minimize possible noise
interferences in our measurements. Making the following steps,
we reduced our platform’s idle power consumption from 8,6 to 5.8
watts on average.

After reaching the stable condition, we launched our main script
i.e., script.executeTasksRemotely, that executes all the tasks im-
plemented in different programming languages. Before executing
a task, the execution script sends a command to the remote host,

13https://github.com/stefanos1316/Rosetta-Code-Research
14http://www.ntp.org/
15http://www.gnuplot.info/
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Figure 3: Energy Consumption for Compiled Programming
Languages with Optimizations
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Figure 4: Run-time Performance for Compiled Program-
ming Languages with Optimizations

i.e., Raspberry Pi, through a password-less ssh connection to start
collecting power consumption measurements from wup for the
currently executing task. In addition, the local host retrieves run-
time performance measurements through the time16 command and
stores them in timestamped directories which we analyze later.
Between each execution of a task, we added a sleep17 period of
three minutes. The time gap exists to ensure that our experimental
platform reached a stable condition and to avoid unnecessary noise
in our measurements. For example, to ensure the platform’s cpu is
cooled down and the fan is no longer consuming more power.
16https://linux.die.net/man/1/time
17http://man7.org/linux/man-pages/man3/sleep.3.html
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Figure 5: Energy Consumption for Interpreted Program-
ming Languages
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Figure 6: Run-time Performance for Interpreted Program-
ming Languages

3 RESULTS AND DISCUSSION
For some tasks, the execution time was less than a second. This fact
explains the zeros shown in our graphs since it is impossible for
wup to collect measurements that have duration less than a second
of time interval. Figure 1 illustrates the total energy required for
each task implementation to execute with no compiler optimiza-
tion. The results depict that Java and Rust have the highest energy
consumption among the compiled programming languages while
Go has the lowest. Also, the results in Figure 2 show that energy
consumption is directly affected by the run-time performance in
all cases except for Rust. In case of Rust, the energy consumption



Analyzing Programming Languages’ Energy Consumption:
An Empirical Study PCI ’17, September 2017, Larrisa, Greece

Table 2: Comparative Results show the percentage
of increased energy usage while using the inefficient
implementation in comparison to the efficient

Tasks Name Implementations Comparative
Efficient Inefficient Results

Array-Concat php, Ruby Swift 888%
Classes php Python 1616%
Bubble JavaScript Swift 12694%
Insertion JavaScript Perl 9430%
Merge JavaScript R 2894%
Quick php Swift 1212%
Selection JavaScript R 6657%
Url-Decode php Python 2963%
Url-Encode php R 3239%

is kept relatively high the run-time performance is not affected
negatively like in Java.

Figure 3 shows the total energy dissipation from the beginning
until the end of a task (while making use of the compiler optimiza-
tions). The obtained results show the use of compiler optimizations
reduces energy usage in most of the cases while it increases it in
others. For C#, the energy usage of quick-, insertion-, bubble- sort
and url-decode increased in range of 1% to 10% whereas for merge-,
selection- sort, classes and url-encode reductions were between 3.8%
and 36.6%. C’s gcc -O3 achieved energy reductions ranging from
43.36% to 99.6% for the majority of tasks apart from url-decoding
where the energy increased to 14.7%. In the case of C++, the g++
-O3 resulted in energy savings between 0.9% to 84.71% for all tasks
except for the url-decoding that introduced increased energy usage
of 33.33%. For Go most of sorting algorithms and url-decoding en-
ergy usage reductions were ranging from 14.39% to 31.35% while
for insertion-sort and url-encoding increased between 15.38% to 62%.
Java was the only programming language with energy reduction
for all tasks, in range of 6% to 98.4%. In the case of Rust, energy
requirements for all tasks, reduced in range of 15.8% to 97.7% apart
from the classes task where the energy usage increased to 15.4%.
Regarding vb.net, the compiler optimization had very small impact
on energy consumption; less than 10%.

For the interpreted programming languages, we can see that
the energy consumption among them is significantly different as
depicted in Table 2. The most inefficient case is Swift that con-
sumes 12694% more energy compares to JavaScript. In general, php,
Ruby, and JavaScript achieved the most energy efficiency compared
to Swift, R, Perl, and Python where their implementations con-
tributed to the highest energy consumption. In terms of run-time
performance, Figure 6 results show the energy consumed by the in-
terpreted tasks (see Figure 5) have a relationship with the execution
time.

4 THREATS TO VALIDITY
Internal: In order to avoid additional overhead in our experimental
setup, we used a remote host to collect our results. Therefore, the
need of a wireless connection was necessary, which might result on
additional energy requirements (by making use of the ssh to start

and stop the wup). Moreover, we cannot have full control of our os
workloads and background operations. Therefore, it is possible that
some daemons might start running while testing our experiment.
External: Our real-time power analyzer offers minimum sampling
interval of a second. In Figures 1, 3, and 5 the energy dissipation
results to zero can be interpreted as follows. When the tasks exe-
cution is less than a seconds, this makes it impossible for wup to
capture such measurements.

5 RELATEDWORK
Most empirical studies evaluate software projects from particular
programming language families. Here, we count the energy con-
sumption of programming tasks across 14 programming languages.
To the best of our knowledge, this is the first study that assesses
the energy consumption in different programming languages using
the Rosetta Code Repository. In the following, we present related
work to our topic and compare our results with the results from
previous studies.

5.1 Programming Languages
Studies regarding the strengths and weaknesses of different pro-
gramming languages can help developers to decide which program-
ming language they will use to perform specific programming tasks.
For instance, if programmers aim at the scalability and performance
of their systems, they use functional programmingmost of the times.
On the other hand, when they want to develop programs with high
modularity, they use object-oriented programming languages.

Closest to our paper is the empirical study that Nanz and Furia
conducted on the Rosetta Code Repository to compare the efficiency
of eight popular programming languages, including C, Go, C#, Java,
F#, Haskell, Python, and Ruby [11]. Contrary to this work, we used
a power analyzer to run programming tasks on 14 different pro-
gramming languages in order to compare the energy consumption
at runtime.

In addition, Meyerovich and Rabkin conducted an empirical
study by analyzing 200,000 SourceForge projects and asking almost
13,000 programmers to identify characteristics that lead the latter
to select appropriate programming languages in business level [10].
However, this study is a survey on the adoption of programming
languages in the industry. Our goal here is different. We compare
the energy consumption of programming tasks performed in several
programming languages.

5.2 Energy Consumption and Performance
Several researchers have investigated the energy efficiency and run-
time performance impact over different programming languages.
Also, a significant amount of works have taken into account the
execution environment where the programs can run efficiently.

In particular, Abdulsalam et al. conducted experiments on work-
stations [1], whereas Rashid et al. on an embedded system [12] and
Chen and Zong on smart-phones [3]. Abdulsalam et al. evaluated
the energy effect of four memory allocation choices (malloc, new,
array, and vector) and they showed that malloc is the most ef-
ficient in terms of energy and performance [1]. Chen and Zong
showed by using the Android Run Time environment (instead of
Dalvik), that the energy and performance implications of Java are
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similar to C and C++ [3]. Finally, Rashid et al. compared the energy
and performance impact of four sorting algorithms written in three
different programming languages (arm assembly, C/C++, and Java).
They found that Java consumes the most energy [12]. From all these
studies it seems that Java and Python consume a lot of energy and
perform slowly in comparison with C/C++ and Assembly.

Additionally, many empirical studies have assessed the impact
of coding practices (e.g. the use of for loops, getters and setters,
static method invocation, views and widgets, and so on) regarding
energy consumption. Characteristically, Tonini et al. conducted a
study on Android applications and found that the use of for loops
with specified length and the access of class variables without the
use of getters and setters can reduce the amount of the energy that
the applications consume [13]. Furthermore, in their study, Linares-
Vsquez et al. performed analysis over 55 Android applications from
various domains and they reported the most energy consuming api
methods [9]. For instance, they found that the 60% of the energy-
greedy apis, 37% were related to the graphical user interface and
image manipulation, while the remaining 23% were associated with
the database.

Contrary to previous works, here we compare energy consum-
ing programming tasks in more than 14 programming languages.
Our results show that significant diverge with respect to energy
consumption exist for interpreted programming languages. More-
over, we provide comparison in programming languages such as
Go, Rust, vb.net, and C# which is not available in prior works.

6 CONCLUSIONS AND FUTUREWORK
Nowadays, applications have been consolidated from local servers
and mainframes towards data centers. This imposes the energy
efficient development of independent and reusable applications
in a variety of programming languages. Goal of this paper is to
compare the energy consumption of specific programming tasks in
different programming languages and identify which languages are
appropriate to be used in modern services. In brief, we conducted
an empirical study using a power analyzer to measure the energy
consumption of several programming tasks found in the Rosetta
Code Repository, for 14 popular programming languages.

According to our findings, the total energy consumption—for
the tested tasks—of compiled programming languages seems to be
much lower compared to this of the interpreted ones. Overall, our
experiments revealed that vb.net and Swift are the most inefficient
programming languages among the compiled and interpreted, re-
spectively. Prior works [1, 4] also evaluated the energy efficiency
of compiled programming languages and showed that C and C++
were the most energy efficient compared to Java. In contrast, the
tasks we compared show that Java’s energy consumption does not
diverge significantly from C and C++. Moreover, in tasks such as
url -encode and decode, Java achieves more energy efficiency than
C and C++. In addition, we also compared Go which results to even
higher energy savings compared to C and C++ for all tasks apart
from insertion-sort. Regarding interpreted programming languages,
JavaScript indicates the highest level of energy–efficiency. On the
other hand, Swift seems to consume the most energy in total.

As far as future work is concerned, we would like to test all
the 29 collected tasks and, furthermore, to implement and evaluate

additional ones, including exception handling, and particular tasks
for functional programming. Moreover, we will test the collected
tasks in different cpu architectures, such as amd and arm. We, also,
plan to collect resource usages to identify possible relationships
between programming languages and resources. To this end, we
expect that the obtained results can shed light on how to efficiently
develop larger and more complex applications.
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